else: continue if ( m_score > 0.0 ): machine_score.append(m_score) human_score.append(float(p[2])) p_val, p_rel = sci.stats.spearmanr(human_score, machine_score) print "Simple Linear Approach", p_val if __name__ == "__main__": word_vectors = nlp.read_word_vectors(VECTOR_DIR + VECTOR_NAME) word_pairs = nlp.read_csv(CSV_DIR + CSV_NAME) vocab = [] for p in word_pairs: vocab.append(p[0].lower()) vocab.append(p[1].lower()) vocab = list(set(vocab)) for w in vocab: word_hypernyms[w] = nlp.read_hypernyms(w) word_hyponyms[w] = nlp.read_hyponyms(w) word_synonyms[w] = nlp.read_synonyms(w) senses[w] = nlp.read_senses(w) for s in senses[w]: sense_vectors[s] = np.zeros(VECTOR_DIM) sense_hypernyms[s] = nlp.read_hypernyms_by_sense(s) sense_hyponyms[s] = nlp.read_hyponyms_by_sense(s) sense_synonyms[s] = nlp.read_synonyms_by_sense(s) sense_vectors[s] = nlp.get_pooling(s, sense_hypernyms,sense_synonyms,sense_hyponyms, word_vectors, VECTOR_DIM) if ( word_vectors.has_key(w)): sense_vectors[s] = sense_vectors[s] + word_vectors[w] word_pool[w] = nlp.get_pooling(w, word_hypernyms, word_synonyms, word_hyponyms, word_vectors, VECTOR_DIM) test_sense_vectors()
print "pre_cost",pre_cost, "cost", cost if ( (pre_cost - cost) <= 1e-8 ): s_vecs = pre_vecs break pre_vecs = s_vecs i = 0 for s in senses[w]: sense_vectors[s] = s_vecs[i] i = i + 1 test_sense_vectors() if __name__ == "__main__": word_vectors = nlp.read_word_vectors(VECTOR_DIR + VECTOR_NAME) print "LEARNING_RATE", L_RATE word_pairs = nlp.read_csv(CSV_DIR + CSV_NAME) vocab = [] for p in word_pairs: vocab.append(p[0]) vocab.append(p[1]) vocab = list(set(vocab)) for w in vocab: word_hypernyms[w] = nlp.read_hypernyms(w) word_hyponyms[w] = nlp.read_hyponyms(w) word_synonyms[w] = nlp.read_synonyms(w) senses[w] = nlp.read_senses(w) for s in senses[w]: sense_hypernyms[s] = nlp.read_hypernyms_by_sense(s) sense_hyponyms[s] = nlp.read_hyponyms_by_sense(s) sense_synonyms[s] = nlp.read_synonyms_by_sense(s) word_pool[w] = nlp.get_pooling(w, word_hypernyms, word_synonyms, word_hyponyms, word_vectors) train_NN()
for p in word_pairs: vocab.append(p[0].lower()) vocab.append(p[1].lower()) vocab = list(set(vocab)) for w in vocab: word_hypernyms[w] = nlp.read_hypernyms(w) word_hyponyms[w] = nlp.read_hyponyms(w) word_synonyms[w] = nlp.read_synonyms(w) senses[w] = nlp.read_senses(w) for s in senses[w]: sense_vectors[s] = np.zeros(VECTOR_DIM) sense_hypernyms[s] = nlp.read_hypernyms_by_sense(s) sense_hyponyms[s] = nlp.read_hyponyms_by_sense(s) sense_synonyms[s] = nlp.read_synonyms_by_sense(s) sense_pool[s] = nlp.get_pooling(s, sense_hypernyms, sense_synonyms, sense_hyponyms, word_vectors, VECTOR_DIM) if (word_vectors.has_key(w)): sense_pool[s] = sense_pool[s] + word_vectors[w] sense_vectors[s] = sense_pool[s] for l in s.lemmas(): word = str(l.name()) word_hypernyms[word] = nlp.read_hypernyms(word) word_hyponyms[word] = nlp.read_hyponyms(word) word_synonyms[word] = nlp.read_synonyms(word) word_pool[word] = nlp.get_pooling(word, word_hypernyms, word_synonyms, word_hyponyms, word_vectors, VECTOR_DIM) word_pool[w] = nlp.get_pooling(w, word_hypernyms, word_synonyms, word_hyponyms, word_vectors, VECTOR_DIM)
s_vecs, s_star = calc_NN(w, p_w = para_w, p_u = para_u, p_v = para_v, p_b = para_b) cost = cost_function(word_pool[w], s_star) print "pre_cost",pre_cost, "cost", cost if ( cost > pre_cost ): s_vecs = pre_vecs break i = 0 for s in senses[w]: sense_vectors[s] = s_vecs[i] i = i + 1 if __name__ == "__main__": word_vectors = nlp.read_word_vectors(VECTOR_DIR + VECTOR_NAME) print "LEARNING_RATE", L_RATE word_pairs = nlp.read_csv(CSV_DIR + CSV_NAME) vocab = [] for p in word_pairs: vocab.append(p[0]) vocab.append(p[1]) vocab = list(set(vocab)) for w in vocab: word_hypernyms[w] = nlp.read_hypernyms(w) word_hyponyms[w] = nlp.read_hyponyms(w) word_synonyms[w] = nlp.read_synonyms(w) senses[w] = nlp.read_senses(w) for s in senses[w]: sense_hypernyms[s] = nlp.read_hypernyms_by_sense(s) sense_hyponyms[s] = nlp.read_hyponyms_by_sense(s) sense_synonyms[s] = nlp.read_synonyms_by_sense(s) word_pool[w] = nlp.get_pooling(w, word_hypernyms, word_synonyms, word_hyponyms, word_vectors) train_NN()