from dataparser import train_test_split from preprocess import preprocess import time input_size, output_size, train_data, test_data = train_test_split( False, False, 0.1, True) #train_data = train_data[len(train_data) // 2:] print("Parsed data") assert (input_size in [784, 785, 288, 289] and output_size == 10) layers = [input_size, 128, 64, output_size] print(layers) # layers = [input_size, output_size] lr = (0.001, 0.0005) transfer = "logistic" batch_size = 4 brain = NN(layers, lr, transfer, batch_size) print("Error", brain.get_error(test_data)) print("Training") print(len(train_data)) start = time.time() brain.learn(train_data, test_data, 100, 5, "weights/weights12864_{}.npz") print("Took:", time.time() - start) print("Error", brain.get_error(test_data)) print("Accuracy", brain.get_correct(test_data)) brain.save("weights/weights12864_final.npz")
from nn import NN from dataparser import train_test_split, submit input_size, output_size, train_data, test_data = train_test_split( False, False, 0.1, True) layers = [input_size, 64, 128, output_size] print(layers) # layers = [input_size, output_size] lr = (0.001, 0.001) transfer = "logistic" brain = NN(layers, lr, transfer, 32) brain.load('weights/weights4_final.npz') print("Error 1:", brain.get_error(train_data)) print("Accuracy 1:", brain.get_correct(train_data)) print("Error 2:", brain.get_error(test_data)) print("Accuracy 2:", brain.get_correct(test_data)) submit(brain, 'submission.csv', True)