def __init__(self, config): # save the references and configuration if any is set if len(config) is 0: self.classifier = SDRClassifierFactory.create() else: self.classifier = SDRClassifierFactory.create(config)
def POST(self): global modelCache params = json.loads(web.data()) requestInput = web.input() id = requestInput["id"] # We will always return the active cells because they are cheap. returnSnapshots = [TM_SNAPS.ACT_CELLS] from pprint import pprint pprint(params) tm = TM(**params) tmFacade = TmFacade(tm, ioClient, modelId=id) modelId = tmFacade.getId() modelCache[modelId]["tm"] = tmFacade modelCache[modelId]["classifier"] = SDRClassifierFactory.create( implementation="py") modelCache[modelId]["recordsSeen"] = 0 print "Created TM {}".format(modelId) payload = {"meta": {"id": modelId, "saving": returnSnapshots}} tmState = tmFacade.getState(*returnSnapshots) for key in tmState: payload[key] = tmState[key] web.header("Content-Type", "application/json") return json.dumps(payload)
def POST(self): global modelCache params = json.loads(web.data()) requestInput = web.input() id = requestInput["id"] # We will always return the active cells because they are cheap. returnSnapshots = [TM_SNAPS.ACT_CELLS] from pprint import pprint; pprint(params) tm = TM(**params) tmFacade = TmFacade(tm, ioClient, modelId=id) modelId = tmFacade.getId() modelCache[modelId]["tm"] = tmFacade modelCache[modelId]["classifier"] = SDRClassifierFactory.create(implementation="py") modelCache[modelId]["recordsSeen"] = 0 print "Created TM {}".format(modelId) payload = { "meta": { "id": modelId, "saving": returnSnapshots } } tmState = tmFacade.getState(*returnSnapshots) for key in tmState: payload[key] = tmState[key] web.header("Content-Type", "application/json") return json.dumps(payload)
def initialize(self, inputs, outputs): """ It is called once by NuPIC before the first call to compute(). @param inputs -- inputs of the classifier region @param outputs -- outputs of the classifier region """ self._sdrClassifier = SDRClassifierFactory.create( steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=self.implementation )
def initialize(self): """ Is called once by NuPIC before the first call to compute(). Initializes self._sdrClassifier if it is not already initialized. """ if self._sdrClassifier is None: self._sdrClassifier = SDRClassifierFactory.create( steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=self.implementation, )
def initialize(self, inputs, outputs): """ It is called once by NuPIC before the first call to compute(). @param inputs -- inputs of the classifier region @param outputs -- outputs of the classifier region """ self._sdrClassifier = SDRClassifierFactory.create( steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=self.implementation, )
def initialize(self): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.initialize`. Is called once by NuPIC before the first call to compute(). Initializes self._sdrClassifier if it is not already initialized. """ if self._sdrClassifier is None: self._sdrClassifier = SDRClassifierFactory.create( steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=self.implementation, )
def readFromProto(cls, proto): """Read state from proto object. proto: SDRClassifierRegionProto capnproto object """ instance = cls() instance.implementation = proto.implementation instance.steps = proto.steps instance.alpha = proto.alpha instance.verbosity = proto.verbosity instance.maxCategoryCount = proto.maxCategoryCount instance._sdrClassifier = SDRClassifierFactory.read(proto) return instance
def readFromProto(cls, proto): """Read state from proto object. proto: CLAClassifierRegionProto capnproto object """ instance = cls() instance.implementation = proto.implementation instance.steps = proto.steps instance.alpha = proto.alpha instance.verbosity = proto.verbosity instance.maxCategoryCount = proto.maxCategoryCount instance._sdrClassifier = SDRClassifierFactory.read(proto) return instance
def readFromProto(cls, proto): """ Read state from proto object. :param proto: SDRClassifierRegionProto capnproto object """ instance = cls() instance.implementation = proto.implementation instance.steps = proto.steps instance.stepsList = [int(i) for i in proto.steps.split(",")] instance.alpha = proto.alpha instance.verbosity = proto.verbosity instance.maxCategoryCount = proto.maxCategoryCount instance._sdrClassifier = SDRClassifierFactory.read(proto) instance.learningMode = proto.learningMode instance.inferenceMode = proto.inferenceMode instance.recordNum = proto.recordNum return instance
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + scalarEncoder.getWidth()) sp = SpatialPooler( # How large the input encoding will be. inputDimensions=(encodingWidth), # How many mini-columns will be in the Spatial Pooler. columnDimensions=(spParams["columnCount"]), # What percent of the columns"s receptive field is available for potential # synapses? potentialPct=spParams["potentialPct"], # This means that the input space has no topology. globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], # Roughly 2%, giving that there is only one inhibition area because we have # turned on globalInhibition (40 / 2048 = 0.0195) numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], # How quickly synapses grow and degrade. synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], # boostStrength controls the strength of boosting. Boosting encourages # efficient usage of SP columns. boostStrength=spParams["boostStrength"], # Random number generator seed. seed=spParams["seed"], # TODO: is this useful? # Determines if inputs at the beginning and end of an input dimension should # be considered neighbors when mapping columns to inputs. wrapAround=False ) tm = TemporalMemory( # Must be the same dimensions as the SP columnDimensions=(tmParams["columnCount"],), # How many cells in each mini-column. cellsPerColumn=tmParams["cellsPerColumn"], # A segment is active if it has >= activationThreshold connected synapses # that are active due to infActiveState activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], # TODO: This comes from the SP params, is this normal connectedPermanence=spParams["synPermConnected"], # Minimum number of active synapses for a segment to be considered during # search for the best-matching segments. minThreshold=tmParams["minThreshold"], # The max number of synapses added to a segment during learning maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"] ) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits] ) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute( recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True ) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted( zip(classifierResult[1], classifierResult["actualValues"]), reverse=True )[0] print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) results.append([oneStep, oneStepConfidence * 100, None, None]) return results
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) CtEncoder = RandomDistributedScalarEncoder(enParams["Ct"]["resolution"]) ZIP_10467Encoder = RandomDistributedScalarEncoder( enParams["ZIP_10467"]["resolution"]) # ZIP_10462Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10462"]["resolution"]) # ZIP_10475Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10475"]["resolution"]) # ZIP_10466Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10466"]["resolution"]) # ZIP_10469Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10469"]["resolution"]) # DEPT_11Encoder = RandomDistributedScalarEncoder(enParams["DEPT_11"]["resolution"]) # DEPT_24Encoder = RandomDistributedScalarEncoder(enParams["DEPT_24"]["resolution"]) # DEPT_41Encoder = RandomDistributedScalarEncoder(enParams["DEPT_41"]["resolution"]) # DEPT_34Encoder = RandomDistributedScalarEncoder(enParams["DEPT_34"]["resolution"]) # DEPT_31Encoder = RandomDistributedScalarEncoder(enParams["DEPT_31"]["resolution"]) # DEPT_60Encoder = RandomDistributedScalarEncoder(enParams["DEPT_60"]["resolution"]) # AGE_0_9Encoder = RandomDistributedScalarEncoder(enParams["AGE_0_9"]["resolution"]) # AGE_10_19Encoder = RandomDistributedScalarEncoder(enParams["AGE_10_19"]["resolution"]) # AGE_20_29Encoder = RandomDistributedScalarEncoder(enParams["AGE_20_29"]["resolution"]) # AGE_30_39Encoder = RandomDistributedScalarEncoder(enParams["AGE_30_39"]["resolution"]) # AGE_40_49Encoder = RandomDistributedScalarEncoder(enParams["AGE_40_49"]["resolution"]) # AGE_50_59Encoder = RandomDistributedScalarEncoder(enParams["AGE_50_59"]["resolution"]) # AGE_60_69Encoder = RandomDistributedScalarEncoder(enParams["AGE_60_69"]["resolution"]) # AGE_70_79Encoder = RandomDistributedScalarEncoder(enParams["AGE_70_79"]["resolution"]) # AGE_80_89Encoder = RandomDistributedScalarEncoder(enParams["AGE_80_89"]["resolution"]) # AGE_90_99Encoder = RandomDistributedScalarEncoder(enParams["AGE_90_99"]["resolution"]) # DIST_1_7Encoder = RandomDistributedScalarEncoder(enParams["DIST_1_7"]["resolution"]) # DIST_8_14Encoder = RandomDistributedScalarEncoder(enParams["DIST_8_14"]["resolution"]) # DIST_15_21Encoder = RandomDistributedScalarEncoder(enParams["DIST_15_21"]["resolution"]) # DIST_22_28Encoder = RandomDistributedScalarEncoder(enParams["DIST_22_28"]["resolution"]) # DIST_29_35Encoder = RandomDistributedScalarEncoder(enParams["DIST_29_35"]["resolution"]) # DIST_36_42Encoder = RandomDistributedScalarEncoder(enParams["DIST_36_42"]["resolution"]) # DIST_43_49Encoder = RandomDistributedScalarEncoder(enParams["DIST_43_49"]["resolution"]) # DIST_50_56Encoder = RandomDistributedScalarEncoder(enParams["DIST_50_56"]["resolution"]) # DIST_57_63Encoder = RandomDistributedScalarEncoder(enParams["DIST_57_63"]["resolution"]) # DIST_64_70Encoder = RandomDistributedScalarEncoder(enParams["DIST_64_70"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + CtEncoder.getWidth() * 2) sp = SpatialPooler( inputDimensions=(encodingWidth, ), columnDimensions=(spParams["columnCount"], ), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"], ), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"]) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME) for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%Y-%m-%d %H:%M:%S") # Convert data value string into float. Ct = float(record[1]) ZIP_10467 = float(record[2]) # ZIP_10462 = float(record[3]) # ZIP_10475 = float(record[4]) # ZIP_10466 = float(record[5]) # ZIP_10469 = float(record[6]) # DEPT_11 = float(record[7]) # DEPT_24 = float(record[8]) # DEPT_41 = float(record[9]) # DEPT_34 = float(record[10]) # DEPT_31 = float(record[11]) # DEPT_60 = float(record[12]) # AGE_0_9 = float(record[13]) # AGE_10_19 = float(record[14]) # AGE_20_29 = float(record[15]) # AGE_30_39 = float(record[16]) # AGE_40_49 = float(record[17]) # AGE_50_59 = float(record[18]) # AGE_60_69 = float(record[19]) # AGE_70_79 = float(record[20]) # AGE_80_89 = float(record[21]) # AGE_90_99 = float(record[22]) # DIST_1_7 = float(record[23]) # DIST_8_14 = float(record[24]) # DIST_15_21 = float(record[25]) # DIST_22_28 = float(record[26]) # DIST_29_35 = float(record[27]) # DIST_36_42 = float(record[28]) # DIST_43_49 = float(record[29]) # DIST_50_56 = float(record[30]) # DIST_57_63 = float(record[31]) # DIST_64_70 = float(record[31]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) CtBits = numpy.zeros(CtEncoder.getWidth()) ZIP_10467Bits = numpy.zeros(ZIP_10467Encoder.getWidth()) # ZIP_10462Bits = numpy.zeros(ZIP_10462Encoder.getWidth()) # ZIP_10475Bits = numpy.zeros(ZIP_10475Encoder.getWidth()) # ZIP_10466Bits = numpy.zeros(ZIP_10466Encoder.getWidth()) # ZIP_10469Bits = numpy.zeros(ZIP_10469Encoder.getWidth()) # DEPT_11Bits = numpy.zeros(DEPT_11Encoder.getWidth()) # DEPT_24Bits = numpy.zeros(DEPT_24Encoder.getWidth()) # DEPT_41Bits = numpy.zeros(DEPT_41Encoder.getWidth()) # DEPT_34Bits = numpy.zeros(DEPT_34Encoder.getWidth()) # DEPT_31Bits = numpy.zeros(DEPT_31Encoder.getWidth()) # DEPT_60Bits = numpy.zeros(DEPT_60Encoder.getWidth()) # AGE_0_9Bits = numpy.zeros(AGE_0_9Encoder.getWidth()) # AGE_10_19Bits = numpy.zeros(AGE_10_19Encoder.getWidth()) # AGE_20_29Bits = numpy.zeros(AGE_20_29Encoder.getWidth()) # AGE_30_39Bits = numpy.zeros(AGE_30_39Encoder.getWidth()) # AGE_40_49Bits = numpy.zeros(AGE_40_49Encoder.getWidth()) # AGE_50_59Bits = numpy.zeros(AGE_50_59Encoder.getWidth()) # AGE_60_69Bits = numpy.zeros(AGE_60_69Encoder.getWidth()) # AGE_70_79Bits = numpy.zeros(AGE_70_79Encoder.getWidth()) # AGE_80_89Bits = numpy.zeros(AGE_80_89Encoder.getWidth()) # AGE_90_99Bits = numpy.zeros(AGE_90_99Encoder.getWidth()) # DIST_1_7Bits = numpy.zeros(DIST_1_7Encoder.getWidth()) # DIST_8_14Bits = numpy.zeros(DIST_8_14Encoder.getWidth()) # DIST_15_21Bits = numpy.zeros(DIST_15_21Encoder.getWidth()) # DIST_22_28Bits = numpy.zeros(DIST_22_28Encoder.getWidth()) # DIST_29_35Bits = numpy.zeros(DIST_29_35Encoder.getWidth()) # DIST_36_42Bits = numpy.zeros(DIST_36_42Encoder.getWidth()) # DIST_43_49Bits = numpy.zeros(DIST_43_49Encoder.getWidth()) # DIST_50_56Bits = numpy.zeros(DIST_50_56Encoder.getWidth()) # DIST_57_63Bits = numpy.zeros(DIST_57_63Encoder.getWidth()) # DIST_64_70Bits = numpy.zeros(DIST_64_70Encoder.getWidth()) # Now we call the encoders to create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) CtEncoder.encodeIntoArray(Ct, CtBits) ZIP_10467Encoder.encodeIntoArray(ZIP_10467, ZIP_10467Bits) # ZIP_10462Encoder.encodeIntoArray(ZIP_10462, ZIP_10462Bits) # ZIP_10475Encoder.encodeIntoArray(ZIP_10475, ZIP_10475Bits) # ZIP_10466Encoder.encodeIntoArray(ZIP_10466, ZIP_10466Bits) # ZIP_10469Encoder.encodeIntoArray(ZIP_10469, ZIP_10469Bits) # DEPT_11Encoder.encodeIntoArray(DEPT_11, DEPT_11Bits) # DEPT_24Encoder.encodeIntoArray(DEPT_24, DEPT_24Bits) # DEPT_41Encoder.encodeIntoArray(DEPT_41, DEPT_41Bits) # DEPT_34Encoder.encodeIntoArray(DEPT_34, DEPT_34Bits) # DEPT_31Encoder.encodeIntoArray(DEPT_31, DEPT_31Bits) # DEPT_60Encoder.encodeIntoArray(DEPT_60, DEPT_60Bits) # AGE_0_9Encoder.encodeIntoArray(AGE_0_9, AGE_0_9Bits) # AGE_10_19Encoder.encodeIntoArray(AGE_10_19, AGE_10_19Bits) # AGE_20_29Encoder.encodeIntoArray(AGE_20_29, AGE_20_29Bits) # AGE_30_39Encoder.encodeIntoArray(AGE_30_39, AGE_30_39Bits) # AGE_40_49Encoder.encodeIntoArray(AGE_40_49, AGE_40_49Bits) # AGE_50_59Encoder.encodeIntoArray(AGE_50_59, AGE_50_59Bits) # AGE_60_69Encoder.encodeIntoArray(AGE_60_69, AGE_60_69Bits) # AGE_70_79Encoder.encodeIntoArray(AGE_70_79, AGE_70_79Bits) # AGE_80_89Encoder.encodeIntoArray(AGE_80_89, AGE_80_89Bits) # AGE_90_99Encoder.encodeIntoArray(AGE_90_99, AGE_90_99Bits) # DIST_1_7Encoder.encodeIntoArray(DIST_1_7, DIST_1_7Bits) # DIST_8_14Encoder.encodeIntoArray(DIST_8_14, DIST_8_14Bits) # DIST_15_21Encoder.encodeIntoArray(DIST_15_21, DIST_15_21Bits) # DIST_22_28Encoder.encodeIntoArray(DIST_22_28, DIST_22_28Bits) # DIST_29_35Encoder.encodeIntoArray(DIST_29_35, DIST_29_35Bits) # DIST_36_42Encoder.encodeIntoArray(DIST_36_42, DIST_36_42Bits) # DIST_43_49Encoder.encodeIntoArray(DIST_43_49, DIST_43_49Bits) # DIST_50_56Encoder.encodeIntoArray(DIST_50_56, DIST_50_56Bits) # DIST_57_63Encoder.encodeIntoArray(DIST_57_63, DIST_57_63Bits) # DIST_64_70Encoder.encodeIntoArray(DIST_64_70, DIST_64_70Bits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, CtBits, ZIP_10467Bits]) # encoding = numpy.concatenate( # [timeOfDayBits, weekendBits, CtBits, # ZIP_10467Bits, ZIP_10462Bits, ZIP_10475Bits, ZIP_10466Bits, ZIP_10469Bits, # DEPT_11Bits, DEPT_24Bits, DEPT_41Bits, DEPT_34Bits, DEPT_31Bits, # DEPT_60Bits, AGE_0_9Bits, AGE_10_19Bits, AGE_20_29Bits, AGE_30_39Bits, # AGE_40_49Bits, AGE_50_59Bits, AGE_60_69Bits, AGE_70_79Bits, AGE_80_89Bits, # AGE_90_99Bits, DIST_1_7Bits, DIST_8_14Bits, DIST_15_21Bits, DIST_22_28Bits, # DIST_29_35Bits, DIST_36_42Bits, DIST_43_49Bits, DIST_50_56Bits, DIST_57_63Bits, # DIST_64_70Bits]) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = CtEncoder.getBucketIndices(Ct)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": Ct }, learn=True, infer=True) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted(zip( classifierResult[1], classifierResult["actualValues"]), reverse=True)[0] # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) # results.append([oneStep, oneStepConfidence * 100, None, None]) results.append([record[0], Ct, oneStep, oneStepConfidence * 100]) output.write(record[0], Ct, oneStep, oneStepConfidence * 100) output.close() return results
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + scalarEncoder.getWidth()) sp = SpatialPooler( inputDimensions=(encodingWidth,), columnDimensions=(spParams["columnCount"],), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True ) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"],), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"] ) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders to create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits] ) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute( recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True ) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted( zip(classifierResult[1], classifierResult["actualValues"]), reverse=True )[0] print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) results.append([oneStep, oneStepConfidence * 100, None, None]) return results
#consumeEncoder = RandomDistributedScalarEncoder( # n=400, # w=21, # resolution=0.4) # best, 0.88 original #consumeEncoder = ScalarEncoder( # n=400, # w=21, # minval=0, # maxval=100) #consumeEncoder = AdaptiveScalarEncoder( # n=400, # w=21) consumeEncoder = SimHashDistributedScalarEncoder(n=400, w=21, resolution=0.25) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + consumeEncoder.getWidth()) classifier = SDRClassifierFactory.create() sp = SpatialPooler(inputDimensions=(encodingWidth, ), columnDimensions=(COL_WIDTH), potentialPct=0.85, potentialRadius=encodingWidth, globalInhibition=True, localAreaDensity=-1.0, numActiveColumnsPerInhArea=40, synPermInactiveDec=0.005, synPermActiveInc=0.04, synPermConnected=0.1, boostStrength=3.0, seed=1956, wrapAround=False) tm = TemporalMemory(columnDimensions=(COL_WIDTH, ), cellsPerColumn=32,
def runHotgym(): timeOfDayEncoder = DateEncoder(timeOfDay=(21,1)) weekendEncoder = DateEncoder(weekend=21) scalarEncoder = RandomDistributedScalarEncoder(0.88) encodingWidth = timeOfDayEncoder.getWidth() \ + weekendEncoder.getWidth() \ + scalarEncoder.getWidth() sp = SpatialPooler( # How large the input encoding will be. inputDimensions=(encodingWidth), # How many mini-columns will be in the Spatial Pooler. columnDimensions=(2048), # What percent of the columns's receptive field is available for potential # synapses? potentialPct=0.85, # This means that the input space has no topology. globalInhibition=True, localAreaDensity=-1.0, # Roughly 2%, giving that there is only one inhibition area because we have # turned on globalInhibition (40 / 2048 = 0.0195) numActiveColumnsPerInhArea=40.0, # How quickly synapses grow and degrade. synPermInactiveDec=0.005, synPermActiveInc=0.04, synPermConnected=0.1, # boostStrength controls the strength of boosting. Boosting encourages # efficient usage of SP columns. boostStrength=3.0, # Random number generator seed. seed=1956, # Determines if inputs at the beginning and end of an input dimension should # be considered neighbors when mapping columns to inputs. wrapAround=False ) tm = TemporalMemory( # Must be the same dimensions as the SP columnDimensions=(2048, ), # How many cells in each mini-column. cellsPerColumn=32, # A segment is active if it has >= activationThreshold connected synapses # that are active due to infActiveState activationThreshold=16, initialPermanence=0.21, connectedPermanence=0.5, # Minimum number of active synapses for a segment to be considered during # search for the best-matching segments. minThreshold=12, # The max number of synapses added to a segment during learning maxNewSynapseCount=20, permanenceIncrement=0.1, permanenceDecrement=0.1, predictedSegmentDecrement=0.0, maxSegmentsPerCell=128, maxSynapsesPerSegment=32, seed=1960 ) classifier = SDRClassifierFactory.create() with open (_INPUT_FILE_PATH) as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits] ) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(2048) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute( recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True ) # Print the best prediction for 1 step out. probability, value = sorted( zip(classifierResult[1], classifierResult["actualValues"]), reverse=True )[0] print("1-step: {:16} ({:4.4}%)".format(value, probability * 100))
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) scalarEncoder2 = RandomDistributedScalarEncoder( enParams["consumption2"]["resolution"]) encodingWidth = (scalarEncoder.getWidth() + scalarEncoder2.getWidth()) sp = SpatialPooler( inputDimensions=(encodingWidth, ), columnDimensions=(spParams["columnCount"], ), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"], ), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"]) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME) for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. # dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. prediction = float(record[1]) prediction2 = float(record[2]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. consumptionBits = numpy.zeros(scalarEncoder.getWidth()) consumptionBits2 = numpy.zeros(scalarEncoder2.getWidth()) # Now we call the encoders to create bit representations for each value. scalarEncoder.encodeIntoArray(prediction, consumptionBits) scalarEncoder2.encodeIntoArray(prediction2, consumptionBits2) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate([consumptionBits, consumptionBits2]) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(prediction)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": prediction }, learn=True, infer=True) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted(zip( classifierResult[1], classifierResult["actualValues"]), reverse=True)[0] # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) # results.append([oneStep, oneStepConfidence * 100, None, None]) results.append( [record[0], prediction, oneStep, oneStepConfidence * 100]) output.write(record[0], prediction, oneStep, oneStepConfidence * 100) output.close() return results
from nupic.algorithms.sdr_classifier_factory import SDRClassifierFactory classifier = SDRClassifierFactory.create()