Пример #1
0
    def __init__(self, config):

        # save the references and configuration if any is set
        if len(config) is 0:
            self.classifier = SDRClassifierFactory.create()
        else:
            self.classifier = SDRClassifierFactory.create(config)
Пример #2
0
    def POST(self):
        global modelCache
        params = json.loads(web.data())
        requestInput = web.input()
        id = requestInput["id"]
        # We will always return the active cells because they are cheap.
        returnSnapshots = [TM_SNAPS.ACT_CELLS]
        from pprint import pprint
        pprint(params)
        tm = TM(**params)

        tmFacade = TmFacade(tm, ioClient, modelId=id)

        modelId = tmFacade.getId()
        modelCache[modelId]["tm"] = tmFacade
        modelCache[modelId]["classifier"] = SDRClassifierFactory.create(
            implementation="py")
        modelCache[modelId]["recordsSeen"] = 0

        print "Created TM {}".format(modelId)

        payload = {"meta": {"id": modelId, "saving": returnSnapshots}}

        tmState = tmFacade.getState(*returnSnapshots)

        for key in tmState:
            payload[key] = tmState[key]

        web.header("Content-Type", "application/json")
        return json.dumps(payload)
  def POST(self):
    global modelCache
    params = json.loads(web.data())
    requestInput = web.input()
    id = requestInput["id"]
    # We will always return the active cells because they are cheap.
    returnSnapshots = [TM_SNAPS.ACT_CELLS]
    from pprint import pprint; pprint(params)
    tm = TM(**params)

    tmFacade = TmFacade(tm, ioClient, modelId=id)

    modelId = tmFacade.getId()
    modelCache[modelId]["tm"] = tmFacade
    modelCache[modelId]["classifier"] = SDRClassifierFactory.create(implementation="py")
    modelCache[modelId]["recordsSeen"] = 0

    print "Created TM {}".format(modelId)

    payload = {
      "meta": {
        "id": modelId,
        "saving": returnSnapshots
      }
    }

    tmState = tmFacade.getState(*returnSnapshots)

    for key in tmState:
      payload[key] = tmState[key]

    web.header("Content-Type", "application/json")
    return json.dumps(payload)
Пример #4
0
 def initialize(self, inputs, outputs):
     """
 It is called once by NuPIC before the first call to compute().
 @param inputs -- inputs of the classifier region
 @param outputs -- outputs of the classifier region
 """
     self._sdrClassifier = SDRClassifierFactory.create(
         steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=self.implementation
     )
Пример #5
0
 def initialize(self):
   """
   Is called once by NuPIC before the first call to compute().
   Initializes self._sdrClassifier if it is not already initialized.
   """
   if self._sdrClassifier is None:
     self._sdrClassifier = SDRClassifierFactory.create(
       steps=self.stepsList,
       alpha=self.alpha,
       verbosity=self.verbosity,
       implementation=self.implementation,
     )
Пример #6
0
 def initialize(self):
   """
   Is called once by NuPIC before the first call to compute().
   Initializes self._sdrClassifier if it is not already initialized.
   """
   if self._sdrClassifier is None:
     self._sdrClassifier = SDRClassifierFactory.create(
       steps=self.stepsList,
       alpha=self.alpha,
       verbosity=self.verbosity,
       implementation=self.implementation,
     )
Пример #7
0
 def initialize(self, inputs, outputs):
     """
 It is called once by NuPIC before the first call to compute().
 @param inputs -- inputs of the classifier region
 @param outputs -- outputs of the classifier region
 """
     self._sdrClassifier = SDRClassifierFactory.create(
         steps=self.stepsList,
         alpha=self.alpha,
         verbosity=self.verbosity,
         implementation=self.implementation,
     )
Пример #8
0
    def initialize(self):
        """
    Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.initialize`.

    Is called once by NuPIC before the first call to compute().
    Initializes self._sdrClassifier if it is not already initialized.
    """
        if self._sdrClassifier is None:
            self._sdrClassifier = SDRClassifierFactory.create(
                steps=self.stepsList,
                alpha=self.alpha,
                verbosity=self.verbosity,
                implementation=self.implementation,
            )
Пример #9
0
  def initialize(self):
    """
    Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.initialize`.

    Is called once by NuPIC before the first call to compute().
    Initializes self._sdrClassifier if it is not already initialized.
    """
    if self._sdrClassifier is None:
      self._sdrClassifier = SDRClassifierFactory.create(
        steps=self.stepsList,
        alpha=self.alpha,
        verbosity=self.verbosity,
        implementation=self.implementation,
      )
Пример #10
0
    def readFromProto(cls, proto):
        """Read state from proto object.

    proto: SDRClassifierRegionProto capnproto object
    """
        instance = cls()

        instance.implementation = proto.implementation
        instance.steps = proto.steps
        instance.alpha = proto.alpha
        instance.verbosity = proto.verbosity
        instance.maxCategoryCount = proto.maxCategoryCount

        instance._sdrClassifier = SDRClassifierFactory.read(proto)

        return instance
Пример #11
0
    def readFromProto(cls, proto):
        """Read state from proto object.

    proto: CLAClassifierRegionProto capnproto object
    """
        instance = cls()

        instance.implementation = proto.implementation
        instance.steps = proto.steps
        instance.alpha = proto.alpha
        instance.verbosity = proto.verbosity
        instance.maxCategoryCount = proto.maxCategoryCount

        instance._sdrClassifier = SDRClassifierFactory.read(proto)

        return instance
Пример #12
0
  def readFromProto(cls, proto):
    """
    Read state from proto object.

    :param proto: SDRClassifierRegionProto capnproto object
    """
    instance = cls()

    instance.implementation = proto.implementation
    instance.steps = proto.steps
    instance.stepsList = [int(i) for i in proto.steps.split(",")]
    instance.alpha = proto.alpha
    instance.verbosity = proto.verbosity
    instance.maxCategoryCount = proto.maxCategoryCount

    instance._sdrClassifier = SDRClassifierFactory.read(proto)

    instance.learningMode = proto.learningMode
    instance.inferenceMode = proto.inferenceMode
    instance.recordNum = proto.recordNum

    return instance
Пример #13
0
    def readFromProto(cls, proto):
        """
    Read state from proto object.

    :param proto: SDRClassifierRegionProto capnproto object
    """
        instance = cls()

        instance.implementation = proto.implementation
        instance.steps = proto.steps
        instance.stepsList = [int(i) for i in proto.steps.split(",")]
        instance.alpha = proto.alpha
        instance.verbosity = proto.verbosity
        instance.maxCategoryCount = proto.maxCategoryCount

        instance._sdrClassifier = SDRClassifierFactory.read(proto)

        instance.learningMode = proto.learningMode
        instance.inferenceMode = proto.inferenceMode
        instance.recordNum = proto.recordNum

        return instance
Пример #14
0
def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(encodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(spParams["columnCount"]),
    # What percent of the columns"s receptive field is available for potential
    # synapses?
    potentialPct=spParams["potentialPct"],
    # This means that the input space has no topology.
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    # Roughly 2%, giving that there is only one inhibition area because we have
    # turned on globalInhibition (40 / 2048 = 0.0195)
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    # How quickly synapses grow and degrade.
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    # boostStrength controls the strength of boosting. Boosting encourages
    # efficient usage of SP columns.
    boostStrength=spParams["boostStrength"],
    # Random number generator seed.
    seed=spParams["seed"],
    # TODO: is this useful?
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False
  )

  tm = TemporalMemory(
    # Must be the same dimensions as the SP
    columnDimensions=(tmParams["columnCount"],),
    # How many cells in each mini-column.
    cellsPerColumn=tmParams["cellsPerColumn"],
    # A segment is active if it has >= activationThreshold connected synapses
    # that are active due to infActiveState
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    # TODO: This comes from the SP params, is this normal
    connectedPermanence=spParams["synPermConnected"],
    # Minimum number of active synapses for a segment to be considered during
    # search for the best-matching segments.
    minThreshold=tmParams["minThreshold"],
    # The max number of synapses added to a segment during learning
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(spParams["columnCount"])

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      oneStepConfidence, oneStep = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
      results.append([oneStep, oneStepConfidence * 100, None, None])

    return results
Пример #15
0
def runHotgym(numRecords):
    with open(_PARAMS_PATH, "r") as f:
        modelParams = yaml.safe_load(f)["modelParams"]
        enParams = modelParams["sensorParams"]["encoders"]
        spParams = modelParams["spParams"]
        tmParams = modelParams["tmParams"]

    timeOfDayEncoder = DateEncoder(
        timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
    weekendEncoder = DateEncoder(
        weekend=enParams["timestamp_weekend"]["weekend"])
    CtEncoder = RandomDistributedScalarEncoder(enParams["Ct"]["resolution"])
    ZIP_10467Encoder = RandomDistributedScalarEncoder(
        enParams["ZIP_10467"]["resolution"])
    #  ZIP_10462Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10462"]["resolution"])
    #  ZIP_10475Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10475"]["resolution"])
    #  ZIP_10466Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10466"]["resolution"])
    #  ZIP_10469Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10469"]["resolution"])
    #  DEPT_11Encoder = RandomDistributedScalarEncoder(enParams["DEPT_11"]["resolution"])
    #  DEPT_24Encoder = RandomDistributedScalarEncoder(enParams["DEPT_24"]["resolution"])
    #  DEPT_41Encoder = RandomDistributedScalarEncoder(enParams["DEPT_41"]["resolution"])
    #  DEPT_34Encoder = RandomDistributedScalarEncoder(enParams["DEPT_34"]["resolution"])
    #  DEPT_31Encoder = RandomDistributedScalarEncoder(enParams["DEPT_31"]["resolution"])
    #  DEPT_60Encoder = RandomDistributedScalarEncoder(enParams["DEPT_60"]["resolution"])
    #  AGE_0_9Encoder = RandomDistributedScalarEncoder(enParams["AGE_0_9"]["resolution"])
    #  AGE_10_19Encoder = RandomDistributedScalarEncoder(enParams["AGE_10_19"]["resolution"])
    #  AGE_20_29Encoder = RandomDistributedScalarEncoder(enParams["AGE_20_29"]["resolution"])
    #  AGE_30_39Encoder = RandomDistributedScalarEncoder(enParams["AGE_30_39"]["resolution"])
    #  AGE_40_49Encoder = RandomDistributedScalarEncoder(enParams["AGE_40_49"]["resolution"])
    #  AGE_50_59Encoder = RandomDistributedScalarEncoder(enParams["AGE_50_59"]["resolution"])
    #  AGE_60_69Encoder = RandomDistributedScalarEncoder(enParams["AGE_60_69"]["resolution"])
    #  AGE_70_79Encoder = RandomDistributedScalarEncoder(enParams["AGE_70_79"]["resolution"])
    #  AGE_80_89Encoder = RandomDistributedScalarEncoder(enParams["AGE_80_89"]["resolution"])
    #  AGE_90_99Encoder = RandomDistributedScalarEncoder(enParams["AGE_90_99"]["resolution"])
    #  DIST_1_7Encoder = RandomDistributedScalarEncoder(enParams["DIST_1_7"]["resolution"])
    #  DIST_8_14Encoder = RandomDistributedScalarEncoder(enParams["DIST_8_14"]["resolution"])
    #  DIST_15_21Encoder = RandomDistributedScalarEncoder(enParams["DIST_15_21"]["resolution"])
    #  DIST_22_28Encoder = RandomDistributedScalarEncoder(enParams["DIST_22_28"]["resolution"])
    #  DIST_29_35Encoder = RandomDistributedScalarEncoder(enParams["DIST_29_35"]["resolution"])
    #  DIST_36_42Encoder = RandomDistributedScalarEncoder(enParams["DIST_36_42"]["resolution"])
    #  DIST_43_49Encoder = RandomDistributedScalarEncoder(enParams["DIST_43_49"]["resolution"])
    #  DIST_50_56Encoder = RandomDistributedScalarEncoder(enParams["DIST_50_56"]["resolution"])
    #  DIST_57_63Encoder = RandomDistributedScalarEncoder(enParams["DIST_57_63"]["resolution"])
    #  DIST_64_70Encoder = RandomDistributedScalarEncoder(enParams["DIST_64_70"]["resolution"])

    encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() +
                     CtEncoder.getWidth() * 2)

    sp = SpatialPooler(
        inputDimensions=(encodingWidth, ),
        columnDimensions=(spParams["columnCount"], ),
        potentialPct=spParams["potentialPct"],
        potentialRadius=encodingWidth,
        globalInhibition=spParams["globalInhibition"],
        localAreaDensity=spParams["localAreaDensity"],
        numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        boostStrength=spParams["boostStrength"],
        seed=spParams["seed"],
        wrapAround=True)

    tm = TemporalMemory(
        columnDimensions=(tmParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        seed=tmParams["seed"])

    classifier = SDRClassifierFactory.create()
    results = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = reader.next()
        reader.next()
        reader.next()

        output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME)

        for count, record in enumerate(reader):

            if count >= numRecords: break

            # Convert data string into Python date object.
            dateString = datetime.datetime.strptime(record[0],
                                                    "%Y-%m-%d %H:%M:%S")
            # Convert data value string into float.
            Ct = float(record[1])
            ZIP_10467 = float(record[2])
            #      ZIP_10462 = float(record[3])
            #      ZIP_10475 = float(record[4])
            #      ZIP_10466 = float(record[5])
            #      ZIP_10469 = float(record[6])
            #      DEPT_11 = float(record[7])
            #      DEPT_24 = float(record[8])
            #      DEPT_41 = float(record[9])
            #      DEPT_34 = float(record[10])
            #      DEPT_31 = float(record[11])
            #      DEPT_60 = float(record[12])
            #      AGE_0_9 = float(record[13])
            #      AGE_10_19 = float(record[14])
            #      AGE_20_29 = float(record[15])
            #      AGE_30_39 = float(record[16])
            #      AGE_40_49 = float(record[17])
            #      AGE_50_59 = float(record[18])
            #      AGE_60_69 = float(record[19])
            #      AGE_70_79 = float(record[20])
            #      AGE_80_89 = float(record[21])
            #      AGE_90_99 = float(record[22])
            #      DIST_1_7 = float(record[23])
            #      DIST_8_14 = float(record[24])
            #      DIST_15_21 = float(record[25])
            #      DIST_22_28 = float(record[26])
            #      DIST_29_35 = float(record[27])
            #      DIST_36_42 = float(record[28])
            #      DIST_43_49 = float(record[29])
            #      DIST_50_56 = float(record[30])
            #      DIST_57_63 = float(record[31])
            #      DIST_64_70 = float(record[31])

            # To encode, we need to provide zero-filled numpy arrays for the encoders
            # to populate.
            timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
            weekendBits = numpy.zeros(weekendEncoder.getWidth())
            CtBits = numpy.zeros(CtEncoder.getWidth())
            ZIP_10467Bits = numpy.zeros(ZIP_10467Encoder.getWidth())
            #      ZIP_10462Bits = numpy.zeros(ZIP_10462Encoder.getWidth())
            #      ZIP_10475Bits = numpy.zeros(ZIP_10475Encoder.getWidth())
            #      ZIP_10466Bits = numpy.zeros(ZIP_10466Encoder.getWidth())
            #      ZIP_10469Bits = numpy.zeros(ZIP_10469Encoder.getWidth())
            #      DEPT_11Bits = numpy.zeros(DEPT_11Encoder.getWidth())
            #      DEPT_24Bits = numpy.zeros(DEPT_24Encoder.getWidth())
            #      DEPT_41Bits = numpy.zeros(DEPT_41Encoder.getWidth())
            #      DEPT_34Bits = numpy.zeros(DEPT_34Encoder.getWidth())
            #      DEPT_31Bits = numpy.zeros(DEPT_31Encoder.getWidth())
            #      DEPT_60Bits = numpy.zeros(DEPT_60Encoder.getWidth())
            #      AGE_0_9Bits = numpy.zeros(AGE_0_9Encoder.getWidth())
            #      AGE_10_19Bits = numpy.zeros(AGE_10_19Encoder.getWidth())
            #      AGE_20_29Bits = numpy.zeros(AGE_20_29Encoder.getWidth())
            #      AGE_30_39Bits = numpy.zeros(AGE_30_39Encoder.getWidth())
            #      AGE_40_49Bits = numpy.zeros(AGE_40_49Encoder.getWidth())
            #      AGE_50_59Bits = numpy.zeros(AGE_50_59Encoder.getWidth())
            #      AGE_60_69Bits = numpy.zeros(AGE_60_69Encoder.getWidth())
            #      AGE_70_79Bits = numpy.zeros(AGE_70_79Encoder.getWidth())
            #      AGE_80_89Bits = numpy.zeros(AGE_80_89Encoder.getWidth())
            #      AGE_90_99Bits = numpy.zeros(AGE_90_99Encoder.getWidth())
            #      DIST_1_7Bits = numpy.zeros(DIST_1_7Encoder.getWidth())
            #      DIST_8_14Bits = numpy.zeros(DIST_8_14Encoder.getWidth())
            #      DIST_15_21Bits = numpy.zeros(DIST_15_21Encoder.getWidth())
            #      DIST_22_28Bits = numpy.zeros(DIST_22_28Encoder.getWidth())
            #      DIST_29_35Bits = numpy.zeros(DIST_29_35Encoder.getWidth())
            #      DIST_36_42Bits = numpy.zeros(DIST_36_42Encoder.getWidth())
            #      DIST_43_49Bits = numpy.zeros(DIST_43_49Encoder.getWidth())
            #      DIST_50_56Bits = numpy.zeros(DIST_50_56Encoder.getWidth())
            #      DIST_57_63Bits = numpy.zeros(DIST_57_63Encoder.getWidth())
            #      DIST_64_70Bits = numpy.zeros(DIST_64_70Encoder.getWidth())

            # Now we call the encoders to create bit representations for each value.
            timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
            weekendEncoder.encodeIntoArray(dateString, weekendBits)
            CtEncoder.encodeIntoArray(Ct, CtBits)
            ZIP_10467Encoder.encodeIntoArray(ZIP_10467, ZIP_10467Bits)
            #      ZIP_10462Encoder.encodeIntoArray(ZIP_10462, ZIP_10462Bits)
            #      ZIP_10475Encoder.encodeIntoArray(ZIP_10475, ZIP_10475Bits)
            #      ZIP_10466Encoder.encodeIntoArray(ZIP_10466, ZIP_10466Bits)
            #      ZIP_10469Encoder.encodeIntoArray(ZIP_10469, ZIP_10469Bits)
            #      DEPT_11Encoder.encodeIntoArray(DEPT_11, DEPT_11Bits)
            #      DEPT_24Encoder.encodeIntoArray(DEPT_24, DEPT_24Bits)
            #      DEPT_41Encoder.encodeIntoArray(DEPT_41, DEPT_41Bits)
            #      DEPT_34Encoder.encodeIntoArray(DEPT_34, DEPT_34Bits)
            #      DEPT_31Encoder.encodeIntoArray(DEPT_31, DEPT_31Bits)
            #      DEPT_60Encoder.encodeIntoArray(DEPT_60, DEPT_60Bits)
            #      AGE_0_9Encoder.encodeIntoArray(AGE_0_9, AGE_0_9Bits)
            #      AGE_10_19Encoder.encodeIntoArray(AGE_10_19, AGE_10_19Bits)
            #      AGE_20_29Encoder.encodeIntoArray(AGE_20_29, AGE_20_29Bits)
            #      AGE_30_39Encoder.encodeIntoArray(AGE_30_39, AGE_30_39Bits)
            #      AGE_40_49Encoder.encodeIntoArray(AGE_40_49, AGE_40_49Bits)
            #      AGE_50_59Encoder.encodeIntoArray(AGE_50_59, AGE_50_59Bits)
            #      AGE_60_69Encoder.encodeIntoArray(AGE_60_69, AGE_60_69Bits)
            #      AGE_70_79Encoder.encodeIntoArray(AGE_70_79, AGE_70_79Bits)
            #      AGE_80_89Encoder.encodeIntoArray(AGE_80_89, AGE_80_89Bits)
            #      AGE_90_99Encoder.encodeIntoArray(AGE_90_99, AGE_90_99Bits)
            #      DIST_1_7Encoder.encodeIntoArray(DIST_1_7, DIST_1_7Bits)
            #      DIST_8_14Encoder.encodeIntoArray(DIST_8_14, DIST_8_14Bits)
            #      DIST_15_21Encoder.encodeIntoArray(DIST_15_21, DIST_15_21Bits)
            #      DIST_22_28Encoder.encodeIntoArray(DIST_22_28, DIST_22_28Bits)
            #      DIST_29_35Encoder.encodeIntoArray(DIST_29_35, DIST_29_35Bits)
            #      DIST_36_42Encoder.encodeIntoArray(DIST_36_42, DIST_36_42Bits)
            #      DIST_43_49Encoder.encodeIntoArray(DIST_43_49, DIST_43_49Bits)
            #      DIST_50_56Encoder.encodeIntoArray(DIST_50_56, DIST_50_56Bits)
            #      DIST_57_63Encoder.encodeIntoArray(DIST_57_63, DIST_57_63Bits)
            #      DIST_64_70Encoder.encodeIntoArray(DIST_64_70, DIST_64_70Bits)
            # Concatenate all these encodings into one large encoding for Spatial
            # Pooling.
            encoding = numpy.concatenate(
                [timeOfDayBits, weekendBits, CtBits, ZIP_10467Bits])
            #      encoding = numpy.concatenate(
            #        [timeOfDayBits, weekendBits, CtBits,
            #         ZIP_10467Bits, ZIP_10462Bits, ZIP_10475Bits, ZIP_10466Bits, ZIP_10469Bits,
            #         DEPT_11Bits, DEPT_24Bits, DEPT_41Bits, DEPT_34Bits, DEPT_31Bits,
            #         DEPT_60Bits, AGE_0_9Bits, AGE_10_19Bits, AGE_20_29Bits, AGE_30_39Bits,
            #         AGE_40_49Bits, AGE_50_59Bits, AGE_60_69Bits, AGE_70_79Bits, AGE_80_89Bits,
            #         AGE_90_99Bits, DIST_1_7Bits, DIST_8_14Bits, DIST_15_21Bits, DIST_22_28Bits,
            #         DIST_29_35Bits, DIST_36_42Bits, DIST_43_49Bits, DIST_50_56Bits, DIST_57_63Bits,
            #         DIST_64_70Bits])

            # Create an array to represent active columns, all initially zero. This
            # will be populated by the compute method below. It must have the same
            # dimensions as the Spatial Pooler.
            activeColumns = numpy.zeros(spParams["columnCount"])

            # Execute Spatial Pooling algorithm over input space.
            sp.compute(encoding, True, activeColumns)
            activeColumnIndices = numpy.nonzero(activeColumns)[0]

            # Execute Temporal Memory algorithm over active mini-columns.
            tm.compute(activeColumnIndices, learn=True)

            activeCells = tm.getActiveCells()

            # Get the bucket info for this input value for classification.
            bucketIdx = CtEncoder.getBucketIndices(Ct)[0]

            # Run classifier to translate active cells back to scalar value.
            classifierResult = classifier.compute(recordNum=count,
                                                  patternNZ=activeCells,
                                                  classification={
                                                      "bucketIdx": bucketIdx,
                                                      "actValue": Ct
                                                  },
                                                  learn=True,
                                                  infer=True)

            # Print the best prediction for 1 step out.
            oneStepConfidence, oneStep = sorted(zip(
                classifierResult[1], classifierResult["actualValues"]),
                                                reverse=True)[0]
            # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
            #      results.append([oneStep, oneStepConfidence * 100, None, None])
            results.append([record[0], Ct, oneStep, oneStepConfidence * 100])
            output.write(record[0], Ct, oneStep, oneStepConfidence * 100)

        output.close()
        return results
Пример #16
0
def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(encodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(spParams["columnCount"]),
    # What percent of the columns"s receptive field is available for potential
    # synapses?
    potentialPct=spParams["potentialPct"],
    # This means that the input space has no topology.
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    # Roughly 2%, giving that there is only one inhibition area because we have
    # turned on globalInhibition (40 / 2048 = 0.0195)
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    # How quickly synapses grow and degrade.
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    # boostStrength controls the strength of boosting. Boosting encourages
    # efficient usage of SP columns.
    boostStrength=spParams["boostStrength"],
    # Random number generator seed.
    seed=spParams["seed"],
    # TODO: is this useful?
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False
  )

  tm = TemporalMemory(
    # Must be the same dimensions as the SP
    columnDimensions=(tmParams["columnCount"],),
    # How many cells in each mini-column.
    cellsPerColumn=tmParams["cellsPerColumn"],
    # A segment is active if it has >= activationThreshold connected synapses
    # that are active due to infActiveState
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    # TODO: This comes from the SP params, is this normal
    connectedPermanence=spParams["synPermConnected"],
    # Minimum number of active synapses for a segment to be considered during
    # search for the best-matching segments.
    minThreshold=tmParams["minThreshold"],
    # The max number of synapses added to a segment during learning
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(spParams["columnCount"])

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      oneStepConfidence, oneStep = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
      results.append([oneStep, oneStepConfidence * 100, None, None])

    return results
Пример #17
0
def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    inputDimensions=(encodingWidth,),
    columnDimensions=(spParams["columnCount"],),
    potentialPct=spParams["potentialPct"],
    potentialRadius=encodingWidth,
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    boostStrength=spParams["boostStrength"],
    seed=spParams["seed"],
    wrapAround=True
  )

  tm = TemporalMemory(
    columnDimensions=(tmParams["columnCount"],),
    cellsPerColumn=tmParams["cellsPerColumn"],
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    connectedPermanence=spParams["synPermConnected"],
    minThreshold=tmParams["minThreshold"],
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders to create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(spParams["columnCount"])

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      oneStepConfidence, oneStep = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
      results.append([oneStep, oneStepConfidence * 100, None, None])

    return results
Пример #18
0
#consumeEncoder = RandomDistributedScalarEncoder(
#  n=400,
#  w=21,
#  resolution=0.4)   # best, 0.88 original
#consumeEncoder = ScalarEncoder(
#  n=400,
#  w=21,
#  minval=0,
#  maxval=100)
#consumeEncoder = AdaptiveScalarEncoder(
#  n=400,
#  w=21)
consumeEncoder = SimHashDistributedScalarEncoder(n=400, w=21, resolution=0.25)
encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() +
                 consumeEncoder.getWidth())
classifier = SDRClassifierFactory.create()
sp = SpatialPooler(inputDimensions=(encodingWidth, ),
                   columnDimensions=(COL_WIDTH),
                   potentialPct=0.85,
                   potentialRadius=encodingWidth,
                   globalInhibition=True,
                   localAreaDensity=-1.0,
                   numActiveColumnsPerInhArea=40,
                   synPermInactiveDec=0.005,
                   synPermActiveInc=0.04,
                   synPermConnected=0.1,
                   boostStrength=3.0,
                   seed=1956,
                   wrapAround=False)
tm = TemporalMemory(columnDimensions=(COL_WIDTH, ),
                    cellsPerColumn=32,
Пример #19
0
def runHotgym():

  timeOfDayEncoder = DateEncoder(timeOfDay=(21,1))
  weekendEncoder = DateEncoder(weekend=21)
  scalarEncoder = RandomDistributedScalarEncoder(0.88)

  encodingWidth = timeOfDayEncoder.getWidth() \
    + weekendEncoder.getWidth() \
    + scalarEncoder.getWidth()

  sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(encodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(2048),
    # What percent of the columns's receptive field is available for potential
    # synapses?
    potentialPct=0.85,
    # This means that the input space has no topology.
    globalInhibition=True,
    localAreaDensity=-1.0,
    # Roughly 2%, giving that there is only one inhibition area because we have
    # turned on globalInhibition (40 / 2048 = 0.0195)
    numActiveColumnsPerInhArea=40.0,
    # How quickly synapses grow and degrade.
    synPermInactiveDec=0.005,
    synPermActiveInc=0.04,
    synPermConnected=0.1,
    # boostStrength controls the strength of boosting. Boosting encourages
    # efficient usage of SP columns.
    boostStrength=3.0,
    # Random number generator seed.
    seed=1956,
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False
  )

  tm = TemporalMemory(
    # Must be the same dimensions as the SP
    columnDimensions=(2048, ),
    # How many cells in each mini-column.
    cellsPerColumn=32,
    # A segment is active if it has >= activationThreshold connected synapses
    # that are active due to infActiveState
    activationThreshold=16,
    initialPermanence=0.21,
    connectedPermanence=0.5,
    # Minimum number of active synapses for a segment to be considered during
    # search for the best-matching segments.
    minThreshold=12,
    # The max number of synapses added to a segment during learning
    maxNewSynapseCount=20,
    permanenceIncrement=0.1,
    permanenceDecrement=0.1,
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=128,
    maxSynapsesPerSegment=32,
    seed=1960
  )

  classifier = SDRClassifierFactory.create()

  with open (_INPUT_FILE_PATH) as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):
      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(2048)

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      probability, value = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(value, probability * 100))
Пример #20
0
def runHotgym(numRecords):
    with open(_PARAMS_PATH, "r") as f:
        modelParams = yaml.safe_load(f)["modelParams"]
        enParams = modelParams["sensorParams"]["encoders"]
        spParams = modelParams["spParams"]
        tmParams = modelParams["tmParams"]

    scalarEncoder = RandomDistributedScalarEncoder(
        enParams["consumption"]["resolution"])
    scalarEncoder2 = RandomDistributedScalarEncoder(
        enParams["consumption2"]["resolution"])

    encodingWidth = (scalarEncoder.getWidth() + scalarEncoder2.getWidth())

    sp = SpatialPooler(
        inputDimensions=(encodingWidth, ),
        columnDimensions=(spParams["columnCount"], ),
        potentialPct=spParams["potentialPct"],
        potentialRadius=encodingWidth,
        globalInhibition=spParams["globalInhibition"],
        localAreaDensity=spParams["localAreaDensity"],
        numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        boostStrength=spParams["boostStrength"],
        seed=spParams["seed"],
        wrapAround=True)

    tm = TemporalMemory(
        columnDimensions=(tmParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        seed=tmParams["seed"])

    classifier = SDRClassifierFactory.create()
    results = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = reader.next()
        reader.next()
        reader.next()

        output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME)

        for count, record in enumerate(reader):

            if count >= numRecords: break

            # Convert data string into Python date object.
            #      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
            # Convert data value string into float.
            prediction = float(record[1])
            prediction2 = float(record[2])

            # To encode, we need to provide zero-filled numpy arrays for the encoders
            # to populate.
            consumptionBits = numpy.zeros(scalarEncoder.getWidth())
            consumptionBits2 = numpy.zeros(scalarEncoder2.getWidth())

            # Now we call the encoders to create bit representations for each value.
            scalarEncoder.encodeIntoArray(prediction, consumptionBits)
            scalarEncoder2.encodeIntoArray(prediction2, consumptionBits2)

            # Concatenate all these encodings into one large encoding for Spatial
            # Pooling.
            encoding = numpy.concatenate([consumptionBits, consumptionBits2])

            # Create an array to represent active columns, all initially zero. This
            # will be populated by the compute method below. It must have the same
            # dimensions as the Spatial Pooler.
            activeColumns = numpy.zeros(spParams["columnCount"])

            # Execute Spatial Pooling algorithm over input space.
            sp.compute(encoding, True, activeColumns)
            activeColumnIndices = numpy.nonzero(activeColumns)[0]

            # Execute Temporal Memory algorithm over active mini-columns.
            tm.compute(activeColumnIndices, learn=True)

            activeCells = tm.getActiveCells()

            # Get the bucket info for this input value for classification.
            bucketIdx = scalarEncoder.getBucketIndices(prediction)[0]

            # Run classifier to translate active cells back to scalar value.
            classifierResult = classifier.compute(recordNum=count,
                                                  patternNZ=activeCells,
                                                  classification={
                                                      "bucketIdx": bucketIdx,
                                                      "actValue": prediction
                                                  },
                                                  learn=True,
                                                  infer=True)

            # Print the best prediction for 1 step out.
            oneStepConfidence, oneStep = sorted(zip(
                classifierResult[1], classifierResult["actualValues"]),
                                                reverse=True)[0]
            # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
            #      results.append([oneStep, oneStepConfidence * 100, None, None])
            results.append(
                [record[0], prediction, oneStep, oneStepConfidence * 100])
            output.write(record[0], prediction, oneStep,
                         oneStepConfidence * 100)

        output.close()
        return results
Пример #21
0
from nupic.algorithms.sdr_classifier_factory import SDRClassifierFactory

classifier = SDRClassifierFactory.create()