コード例 #1
0
ファイル: ShadowPolys.py プロジェクト: lamielle/aether
	def read(self) :
		frame=self.input.read()
		cv_rs = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1)
		cv.cvCvtColor(frame,cv_rs,cv.CV_RGB2GRAY)
		frame = cv_rs
		if self.enabled :
			# I think these functions are too specialized for transforms
			cv.cvSmooth(frame,frame,cv.CV_GAUSSIAN,3, 0, 0, 0 )
			cv.cvErode(frame, frame, None, 1)
			cv.cvDilate(frame, frame, None, 1)
			num_contours,contours=cv.cvFindContours(frame,self.storage,cv.sizeof_CvContour,cv.CV_RETR_LIST,cv.CV_CHAIN_APPROX_NONE,cv.cvPoint(0,0))
			if contours is None :
				return []
			else :
				contours = cv.cvApproxPoly( contours, cv.sizeof_CvContour, self.storage, cv.CV_POLY_APPROX_DP, 3, 1 );
				if contours is None :
					return []
				else :
					final_contours = []
					for c in contours.hrange() :
						area = abs(cv.cvContourArea(c))
						#self.debug_print('Polygon Area: %f'%area)
						if area >= self.min_area :
							lst = []
							for pt in c :
								lst.append((pt.x,pt.y))
							final_contours.append(lst)
						contours = contours.h_next
					return final_contours

		return []
コード例 #2
0
ファイル: vermell.py プロジェクト: pnegre/tracking
def getData():
	frame = highgui.cvQueryFrame(capture)
	if frame is None:
		return None

	cv.cvSplit(frame, b_img, g_img, r_img, None)
	cv.cvInRangeS(r_img, 150, 255, r_img)
	cv.cvInRangeS(g_img, 0, 100, g_img)
	cv.cvInRangeS(b_img, 0, 100, b_img)

	cv.cvAnd(r_img, g_img, laser_img)
	cv.cvAnd(laser_img, b_img, laser_img)
	cv.cvErode(laser_img,laser_img) #,0,2)
	cv.cvDilate(laser_img,laser_img)
		
	c_count, contours = cv.cvFindContours (laser_img, 
											storage,
											cv.sizeof_CvContour,
											cv.CV_RETR_LIST,
											cv.CV_CHAIN_APPROX_NONE,
											cv.cvPoint (0,0))
	if c_count:
		return returnEllipses(contours)
	else:
		return None
コード例 #3
0
ファイル: ShadowPolySavior.py プロジェクト: lamielle/aether
	def read(self) :
		frame=self.input.read()
		if self.debug :
			raw_frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,frame.nChannels)
			cv.cvCopy(frame,raw_frame,None)
			self.raw_frame_surface=pygame.image.frombuffer(frame.imageData,(frame.width,frame.height),'RGB')

		if self.enabled :
			cv_rs = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1)

			# convert color
			cv.cvCvtColor(frame,cv_rs,cv.CV_BGR2GRAY)

			# invert the image
			cv.cvSubRS(cv_rs, 255, cv_rs, None);

			# threshold the image
			frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1)
			cv.cvThreshold(cv_rs, frame, self.threshold, 255, cv.CV_THRESH_BINARY)

			if self.debug :
				thresh_frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,3)
				cv.cvCvtColor(frame,thresh_frame,cv.CV_GRAY2RGB)
				self.thresh_frame_surface=pygame.image.frombuffer(thresh_frame.imageData,(frame.width,frame.height),'RGB')

			# I think these functions are too specialized for transforms
			cv.cvSmooth(frame,frame,cv.CV_GAUSSIAN,3, 0, 0, 0 )
			cv.cvErode(frame, frame, None, 1)
			cv.cvDilate(frame, frame, None, 1)

			num_contours,contours=cv.cvFindContours(frame,self.storage,cv.sizeof_CvContour,cv.CV_RETR_LIST,cv.CV_CHAIN_APPROX_NONE,cv.cvPoint(0,0))
			if contours is None :
				return []
			else :
				contours = cv.cvApproxPoly( contours, cv.sizeof_CvContour, self.storage, cv.CV_POLY_APPROX_DP, 3, 1 );
				if contours is None :
					return []
				else :
					final_contours = []
					for c in contours.hrange() :
						area = abs(cv.cvContourArea(c))
						#self.debug_print('Polygon Area: %f'%area)
						if area >= self.min_area :
							lst = []
							for pt in c :
								lst.append((pt.x,pt.y))
							final_contours.append(lst)
						contours = contours.h_next
					return final_contours

		return []
コード例 #4
0
def main(): # ctrl+c to end
    global h,s,v,h2,v2,s2,d,e
    highgui.cvNamedWindow("Camera 1", 1)
    highgui.cvNamedWindow("Orig", 1)
    highgui.cvCreateTrackbar("H", "Camera 1", h, 256, tb_h)
    highgui.cvCreateTrackbar("S", "Camera 1", s, 256, tb_s)
    highgui.cvCreateTrackbar("V", "Camera 1", v, 256, tb_v)
    highgui.cvCreateTrackbar("H2", "Camera 1", h2, 256, tb_h2)
    highgui.cvCreateTrackbar("S2", "Camera 1", s2, 256, tb_s2)
    highgui.cvCreateTrackbar("V2", "Camera 1", v2, 256, tb_v2)
    highgui.cvCreateTrackbar("Dilate", "Camera 1", d, 30, tb_d)
    highgui.cvCreateTrackbar("Erode", "Camera 1", e, 30, tb_e)
    
    cap = highgui.cvCreateCameraCapture(1)
    highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_WIDTH, IMGW)
    highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_HEIGHT, IMGH)
    c = 0
    t1 = tdraw = time.clock()
    t = 1
    font = cv.cvInitFont(cv.CV_FONT_HERSHEY_PLAIN, 1, 1)
    while c != 0x27:
        image = highgui.cvQueryFrame(cap)
        if not image:
            print "capture failed"
            break
            
        thresh = cv.cvCreateImage(cv.cvSize(IMGW,IMGH),8,1)
        cv.cvSetZero(thresh)
        cv.cvCvtColor(image,image,cv.CV_RGB2HSV)
        cv.cvInRangeS(image, (h,s,v,0), (h2,s2,v2,0), thresh)
        result = cv.cvCreateImage(cv.cvSize(IMGW,IMGH),8,3)
        cv.cvSetZero(result)
        
        cv.cvOr(image,image,result,thresh)
        for i in range(1,e):
            cv.cvErode(result,result)
        for i in range(1,d):
            cv.cvDilate(result,result)
            
        # floodfill objects back in, allowing threshold differences outwards
        
        t2 = time.clock()
        if t2 > tdraw+0.3:
            t = t2-t1
            tdraw=t2
        cv.cvPutText(result, "FPS: " + str(1 / (t)), (0,25), font, (255,255,255))
        t1 = t2
        highgui.cvShowImage("Orig", image)
        highgui.cvShowImage("Camera 1", result)
        c = highgui.cvWaitKey(10)
コード例 #5
0
ファイル: LaserPointsSavior.py プロジェクト: lamielle/aether
	def read(self):

		frame = self.input.read()
		if self.debug :
			raw_frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,frame.nChannels)
			cv.cvCopy(frame,raw_frame,None)
			self.raw_frame_surface=pygame.image.frombuffer(frame.imageData,(frame.width,frame.height),'RGB')

		if self.enabled :

			cvt_red = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1)
			cv.cvSplit(frame,None,None,cvt_red,None)

			if self.debug :
				red_frame = cv.cvCreateImage(cv.cvSize(cvt_red.width,cvt_red.height),cvt_red.depth,3)
				cv.cvMerge(cvt_red,None,None,None,red_frame)
				self.red_frame_surface = pygame.image.frombuffer(red_frame.imageData,(cvt_red.width,cvt_red.height),'RGB')

			# I think these functions are too specialized for transforms
			cv.cvSmooth(cvt_red,cvt_red,cv.CV_GAUSSIAN,3, 0, 0, 0 )
			cv.cvErode(cvt_red, cvt_red, None, 1)
			cv.cvDilate(cvt_red, cvt_red, None, 1)

			if self.debug :
				thresh_frame = cv.cvCreateImage(cv.cvSize(cvt_red.width,cvt_red.height),cvt_red.depth,3)
				cv.cvMerge(cvt_red,None,None,None,thresh_frame)
				self.thresh_frame_surface = pygame.image.frombuffer(cvt_red.imageData,(cvt_red.width,cvt_red.height),'RGB')

			cvpt_min = cv.cvPoint(0,0)
			cvpt_max = cv.cvPoint(0,0)
			t = cv.cvMinMaxLoc(cvt_red,cvpt_min,cvpt_max)

			print t
			if cvpt_max.x == 0 and cvpt_max.y == 0 :
				return []
			return [(cvpt_max.x,cvpt_max.y)]
コード例 #6
0
	def detect_squares(self, img_grey, img_orig):
		""" Find squares within the video stream and draw them """
		cv.cvClearMemStorage(self.faces_storage)
		N										= 11
		thresh									= 5
		sz										= cv.cvSize(img_grey.width & -2, img_grey.height & -2)
		timg									= cv.cvCloneImage(img_orig)
		pyr										= cv.cvCreateImage(cv.cvSize(sz.width/2, sz.height/2), 8, 3)
		# create empty sequence that will contain points -
		# 4 points per square (the square's vertices)
		squares									= cv.cvCreateSeq(0, cv.sizeof_CvSeq, cv.sizeof_CvPoint, self.squares_storage)
		squares									= cv.CvSeq_CvPoint.cast(squares)

		# select the maximum ROI in the image
		# with the width and height divisible by 2
		subimage								= cv.cvGetSubRect(timg, cv.cvRect(0, 0, sz.width, sz.height))

		cv.cvReleaseImage(timg)

		# down-scale and upscale the image to filter out the noise
		cv.cvPyrDown(subimage, pyr, 7)
		cv.cvPyrUp(pyr, subimage, 7)
		cv.cvReleaseImage(pyr)
		tgrey									= cv.cvCreateImage(sz, 8, 1)
		# find squares in every color plane of the image
		for c in range(3):
			# extract the c-th color plane
			channels							= [None, None, None]
			channels[c]							= tgrey
			cv.cvSplit(subimage, channels[0], channels[1], channels[2], None)
			for l in range(N):
				# hack: use Canny instead of zero threshold level.
				# Canny helps to catch squares with gradient shading
				if(l == 0):
					# apply Canny. Take the upper threshold from slider
					# and set the lower to 0 (which forces edges merging)
					cv.cvCanny(tgrey, img_grey, 0, thresh, 5)
					# dilate canny output to remove potential
					# holes between edge segments
					cv.cvDilate(img_grey, img_grey, None, 1)
				else:
					# apply threshold if l!=0:
					#     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
					cv.cvThreshold(tgrey, img_grey, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)

				# find contours and store them all as a list
				count, contours					= cv.cvFindContours(img_grey,
																	self.squares_storage,
																	cv.sizeof_CvContour,
																	cv.CV_RETR_LIST,
																	cv.CV_CHAIN_APPROX_SIMPLE,
																	cv.cvPoint(0,0))

				if not contours:
					continue

				# test each contour
				for contour in contours.hrange():
					# approximate contour with accuracy proportional
					# to the contour perimeter
					result						= cv.cvApproxPoly(contour,
																	cv.sizeof_CvContour,
																	self.squares_storage,
																	cv.CV_POLY_APPROX_DP,
																	cv.cvContourPerimeter(contours)*0.02, 0)
					# square contours should have 4 vertices after approximation
					# relatively large area (to filter out noisy contours)
					# and be convex.
					# Note: absolute value of an area is used because
					# area may be positive or negative - in accordance with the
					# contour orientation
					if(result.total == 4 and abs(cv.cvContourArea(result)) > 1000 and cv.cvCheckContourConvexity(result)):
						s						= 0
						for i in range(5):
							# find minimum angle between joint
							# edges (maximum of cosine)
							if(i >= 2):
								t				= abs(self.squares_angle(result[i], result[i-2], result[i-1]))
								if s<t:
									s			= t
						# if cosines of all angles are small
						# (all angles are ~90 degree) then write quandrange
						# vertices to resultant sequence
						if(s < 0.3):
							for i in range(4):
								squares.append(result[i])

		cv.cvReleaseImage(tgrey)
		return squares
コード例 #7
0
    def detect_squares(self, img):
        """ Find squares within the video stream and draw them """
        N = 11
        thresh = 5
        sz = cv.cvSize(img.width & -2, img.height & -2)
        timg = cv.cvCloneImage(img)
        gray = cv.cvCreateImage(sz, 8, 1)
        pyr = cv.cvCreateImage(cv.cvSize(sz.width / 2, sz.height / 2), 8, 3)
        # create empty sequence that will contain points -
        # 4 points per square (the square's vertices)
        squares = cv.cvCreateSeq(0, cv.sizeof_CvSeq, cv.sizeof_CvPoint,
                                 self.storage)
        squares = cv.CvSeq_CvPoint.cast(squares)

        # select the maximum ROI in the image
        # with the width and height divisible by 2
        subimage = cv.cvGetSubRect(timg, cv.cvRect(0, 0, sz.width, sz.height))

        # down-scale and upscale the image to filter out the noise
        cv.cvPyrDown(subimage, pyr, 7)
        cv.cvPyrUp(pyr, subimage, 7)
        tgray = cv.cvCreateImage(sz, 8, 1)
        # find squares in every color plane of the image
        for c in range(3):
            # extract the c-th color plane
            channels = [None, None, None]
            channels[c] = tgray
            cv.cvSplit(subimage, channels[0], channels[1], channels[2], None)
            for l in range(N):
                # hack: use Canny instead of zero threshold level.
                # Canny helps to catch squares with gradient shading
                if (l == 0):
                    # apply Canny. Take the upper threshold from slider
                    # and set the lower to 0 (which forces edges merging)
                    cv.cvCanny(tgray, gray, 0, thresh, 5)
                    # dilate canny output to remove potential
                    # holes between edge segments
                    cv.cvDilate(gray, gray, None, 1)
                else:
                    # apply threshold if l!=0:
                    #     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                    cv.cvThreshold(tgray, gray, (l + 1) * 255 / N, 255,
                                   cv.CV_THRESH_BINARY)

                # find contours and store them all as a list
                count, contours = cv.cvFindContours(gray, self.storage,
                                                    cv.sizeof_CvContour,
                                                    cv.CV_RETR_LIST,
                                                    cv.CV_CHAIN_APPROX_SIMPLE,
                                                    cv.cvPoint(0, 0))

                if not contours:
                    continue

                # test each contour
                for contour in contours.hrange():
                    # approximate contour with accuracy proportional
                    # to the contour perimeter
                    result = cv.cvApproxPoly(
                        contour, cv.sizeof_CvContour, self.storage,
                        cv.CV_POLY_APPROX_DP,
                        cv.cvContourPerimeter(contours) * 0.02, 0)
                    # square contours should have 4 vertices after approximation
                    # relatively large area (to filter out noisy contours)
                    # and be convex.
                    # Note: absolute value of an area is used because
                    # area may be positive or negative - in accordance with the
                    # contour orientation
                    if (result.total == 4
                            and abs(cv.cvContourArea(result)) > 1000
                            and cv.cvCheckContourConvexity(result)):
                        s = 0
                        for i in range(5):
                            # find minimum angle between joint
                            # edges (maximum of cosine)
                            if (i >= 2):
                                t = abs(
                                    self.squares_angle(result[i],
                                                       result[i - 2],
                                                       result[i - 1]))
                                if s < t:
                                    s = t
                        # if cosines of all angles are small
                        # (all angles are ~90 degree) then write quandrange
                        # vertices to resultant sequence
                        if (s < 0.3):
                            for i in range(4):
                                squares.append(result[i])

        i = 0
        while i < squares.total:
            pt = []
            # read 4 vertices
            pt.append(squares[i])
            pt.append(squares[i + 1])
            pt.append(squares[i + 2])
            pt.append(squares[i + 3])

            # draw the square as a closed polyline
            cv.cvPolyLine(img, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv.CV_AA, 0)
            i += 4

        return img
コード例 #8
0
ファイル: ShadowTransform.py プロジェクト: lamielle/aether
	def get_smoothed(self,image):
		cv.cvSmooth(image,image,cv.CV_GAUSSIAN,3,0,0,0)
		cv.cvErode(image,image,None,1)
		cv.cvDilate(image,image,None,1)
		return image
コード例 #9
0
ファイル: dilate_opencv.py プロジェクト: michaelhuang14/pycam
def dilateImage(image):
    cv.cvDilate(image, image, None, 5)
    return image