def event_based(job_id, assets, hazard_getter_name, hazard, seed, vulnerability_function, output_containers, conditional_loss_poes, insured_losses, imt, time_span, tses, loss_curve_resolution, asset_correlation, hazard_montecarlo_p): """ Celery task for the event based risk calculator. :param job_id: the id of the current :class:`openquake.engine.db.models.OqJob` :param assets: the list of `:class:openquake.risklib.scientific.Asset` instances considered :param str hazard_getter_name: class name of a class defined in the :mod:`openquake.engine.calculators.risk.hazard_getters` to be instantiated to get the hazard curves :param dict hazard: A dictionary mapping hazard Output ID to GmfCollection ID :param seed: the seed used to initialize the rng :param dict output_containers: a dictionary mapping hazard Output ID to a list (a, b, c, d) where a is the ID of the :class:`openquake.engine.db.models.LossCurve` output container used to store the computed loss curves; b is the dictionary poe->ID of the :class:`openquake.engine.db.models.LossMap` output container used to store the computed loss maps; c is the same as a but for insured losses; d is the ID of the :class:`openquake.engine.db.models.AggregateLossCurve` output container used to store the computed loss curves :param conditional_loss_poes: The poes taken into accout to compute the loss maps :param bool insured_losses: True if insured losses should be computed :param str imt: the imt used to filter ground motion fields :param time_span: the time span considered :param tses: time of the stochastic event set :param loss_curve_resolution: the curve resolution, i.e. the number of points which defines the loss curves :param float asset_correlation: a number ranging from 0 to 1 representing the correlation between the generated loss ratios """ asset_outputs = OrderedDict() for hazard_output_id, hazard_data in hazard.items(): hazard_id, _ = hazard_data (loss_curve_id, loss_map_ids, mean_loss_curve_id, quantile_loss_curve_ids, insured_curve_id, aggregate_loss_curve_id) = ( output_containers[hazard_output_id]) hazard_getter = general.hazard_getter( hazard_getter_name, hazard_id, imt) calculator = api.ProbabilisticEventBased( vulnerability_function, curve_resolution=loss_curve_resolution, time_span=time_span, tses=tses, seed=seed, correlation=asset_correlation) if insured_losses: calculator = api.InsuredLosses(calculator) # if we need to compute the loss maps, we add the proper risk # aggregator if conditional_loss_poes: calculator = api.ConditionalLosses( conditional_loss_poes, calculator) with logs.tracing('getting hazard'): ground_motion_fields = [hazard_getter(asset.site) for asset in assets] with logs.tracing('computing risk over %d assets' % len(assets)): asset_outputs[hazard_output_id] = calculator( assets, ground_motion_fields) with logs.tracing('writing results'): with db.transaction.commit_on_success(using='reslt_writer'): for i, asset_output in enumerate( asset_outputs[hazard_output_id]): general.write_loss_curve( loss_curve_id, assets[i], asset_output) if asset_output.conditional_losses: general.write_loss_map( loss_map_ids, assets[i], asset_output) if asset_output.insured_losses: general.write_loss_curve( insured_curve_id, assets[i], asset_output) losses = sum(asset_output.losses for asset_output in asset_outputs[hazard_output_id]) general.update_aggregate_losses( aggregate_loss_curve_id, losses) if len(hazard) > 1 and (mean_loss_curve_id or quantile_loss_curve_ids): weights = [data[1] for _, data in hazard.items()] with logs.tracing('writing curve statistics'): with db.transaction.commit_on_success(using='reslt_writer'): for i, asset in enumerate(assets): general.curve_statistics( asset, [asset_output[i].loss_ratio_curve for asset_output in asset_outputs.values()], weights, mean_loss_curve_id, quantile_loss_curve_ids, hazard_montecarlo_p, assume_equal="image") base.signal_task_complete(job_id=job_id, num_items=len(assets))
def event_based(job_id, hazard, seed, vulnerability_function, output_containers, conditional_loss_poes, insured_losses, time_span, tses, loss_curve_resolution, asset_correlation, hazard_montecarlo_p): """ Celery task for the event based risk calculator. :param job_id: the id of the current :class:`openquake.engine.db.models.OqJob` :param dict hazard: A dictionary mapping IDs of :class:`openquake.engine.db.models.Output` (with output_type set to 'gmf_collection') to a tuple where the first element is an instance of :class:`..hazard_getters.GroundMotionValuesGetter`, and the second element is the corresponding weight. :param seed: the seed used to initialize the rng :param dict output_containers: a dictionary mapping hazard Output ID to a list (a, b, c, d) where a is the ID of the :class:`openquake.engine.db.models.LossCurve` output container used to store the computed loss curves; b is the dictionary poe->ID of the :class:`openquake.engine.db.models.LossMap` output container used to store the computed loss maps; c is the same as a but for insured losses; d is the ID of the :class:`openquake.engine.db.models.AggregateLossCurve` output container used to store the computed loss curves :param conditional_loss_poes: The poes taken into accout to compute the loss maps :param bool insured_losses: True if insured losses should be computed :param time_span: the time span considered :param tses: time of the stochastic event set :param loss_curve_resolution: the curve resolution, i.e. the number of points which defines the loss curves :param float asset_correlation: a number ranging from 0 to 1 representing the correlation between the generated loss ratios """ asset_outputs = OrderedDict() for hazard_output_id, hazard_data in hazard.items(): hazard_getter, _ = hazard_data (loss_curve_id, loss_map_ids, mean_loss_curve_id, quantile_loss_curve_ids, insured_curve_id, aggregate_loss_curve_id) = ( output_containers[hazard_output_id]) # FIXME(lp). We should not pass the exact same seed for # different hazard calculator = api.ProbabilisticEventBased( vulnerability_function, curve_resolution=loss_curve_resolution, time_span=time_span, tses=tses, seed=seed, correlation=asset_correlation) if insured_losses: calculator = api.InsuredLosses(calculator) # if we need to compute the loss maps, we add the proper risk # aggregator if conditional_loss_poes: calculator = api.ConditionalLosses( conditional_loss_poes, calculator) with logs.tracing('getting input data from db'): assets, ground_motion_values, missings = hazard_getter() with logs.tracing('computing risk'): asset_outputs[hazard_output_id] = calculator( assets, ground_motion_values) with logs.tracing('writing results'): with db.transaction.commit_on_success(using='reslt_writer'): for i, asset_output in enumerate( asset_outputs[hazard_output_id]): general.write_loss_curve( loss_curve_id, assets[i], asset_output) if asset_output.conditional_losses: general.write_loss_map( loss_map_ids, assets[i], asset_output) if asset_output.insured_losses: general.write_loss_curve( insured_curve_id, assets[i], asset_output) losses = sum(asset_output.losses for asset_output in asset_outputs[hazard_output_id]) general.update_aggregate_losses( aggregate_loss_curve_id, losses) if len(hazard) > 1 and (mean_loss_curve_id or quantile_loss_curve_ids): weights = [data[1] for _, data in hazard.items()] with logs.tracing('writing curve statistics'): with db.transaction.commit_on_success(using='reslt_writer'): for i, asset in enumerate(assets): general.curve_statistics( asset, [asset_output[i].loss_ratio_curve for asset_output in asset_outputs.values()], weights, mean_loss_curve_id, quantile_loss_curve_ids, hazard_montecarlo_p, assume_equal="image") base.signal_task_complete(job_id=job_id, num_items=len(assets) + len(missings))
def classical(job_id, hazard, vulnerability_function, output_containers, lrem_steps_per_interval, conditional_loss_poes, hazard_montecarlo_p): """ Celery task for the classical risk calculator. Instantiates risklib calculators, computes losses for the given assets and stores the results to db in a single transaction. :param int job_id: ID of the currently running job :param dict hazard: A dictionary mapping IDs of :class:`openquake.engine.db.models.Output` (with output_type set to 'hazard_curve') to a tuple where the first element is an instance of :class:`..hazard_getters.HazardCurveGetter`, and the second element is the corresponding weight. :param dict output_containers: A dictionary mapping hazard Output ID to a tuple (a, b) where a is the ID of the :class:`openquake.engine.db.models.LossCurve` output container used to store the computed loss curves and b is a dictionary that maps poe to ID of the :class:`openquake.engine.db.models.LossMap` used to store the loss maps :param int lrem_steps_per_interval: Steps per interval used to compute the Loss Ratio Exceedance matrix :param conditional_loss_poes: The poes taken into account to compute the loss maps :param bool hazard_montecarlo_p: (meaningful only if curve statistics are computed). Wheter or not the hazard calculation is montecarlo based """ asset_outputs = OrderedDict() calculator = api.Classical( vulnerability_function, lrem_steps_per_interval) for hazard_output_id, hazard_data in hazard.items(): # the second item of the tuple is the weight of the hazard (at # this moment we are not interested in it) hazard_getter, _ = hazard_data (loss_curve_id, loss_map_ids, mean_loss_curve_id, quantile_loss_curve_ids) = ( output_containers[hazard_output_id]) with logs.tracing('getting hazard'): assets, hazard_curves, missings = hazard_getter() with logs.tracing('computing risk over %d assets' % len(assets)): asset_outputs[hazard_output_id] = calculator(hazard_curves) with logs.tracing('writing results'): with transaction.commit_on_success(using='reslt_writer'): for i, loss_ratio_curve in enumerate( asset_outputs[hazard_output_id]): asset = assets[i] # Write Loss Curves general.write_loss_curve( loss_curve_id, asset, loss_ratio_curve) # Then conditional loss maps for poe in conditional_loss_poes: general.write_loss_map_data( loss_map_ids[poe], asset, scientific.conditional_loss_ratio( loss_ratio_curve, poe)) if len(hazard) > 1 and (mean_loss_curve_id or quantile_loss_curve_ids): weights = [data[1] for _, data in hazard.items()] with logs.tracing('writing curve statistics'): with transaction.commit_on_success(using='reslt_writer'): loss_ratio_curve_matrix = asset_outputs.values() for i, asset in enumerate(assets): general.curve_statistics( asset, loss_ratio_curve_matrix[i], weights, mean_loss_curve_id, quantile_loss_curve_ids, hazard_montecarlo_p, assume_equal="support") base.signal_task_complete(job_id=job_id, num_items=len(assets) + len(missings))
def event_based(job_id, hazard, seed, vulnerability_function, output_containers, conditional_loss_poes, insured_losses, time_span, tses, loss_curve_resolution, asset_correlation, hazard_montecarlo_p): """ Celery task for the event based risk calculator. :param job_id: the id of the current :class:`openquake.engine.db.models.OqJob` :param dict hazard: A dictionary mapping IDs of :class:`openquake.engine.db.models.Output` (with output_type set to 'gmf_collection') to a tuple where the first element is an instance of :class:`..hazard_getters.GroundMotionValuesGetter`, and the second element is the corresponding weight. :param seed: the seed used to initialize the rng :param dict output_containers: a dictionary mapping hazard Output ID to a list (a, b, c, d) where a is the ID of the :class:`openquake.engine.db.models.LossCurve` output container used to store the computed loss curves; b is the dictionary poe->ID of the :class:`openquake.engine.db.models.LossMap` output container used to store the computed loss maps; c is the same as a but for insured losses; d is the ID of the :class:`openquake.engine.db.models.AggregateLossCurve` output container used to store the computed loss curves :param conditional_loss_poes: The poes taken into accout to compute the loss maps :param bool insured_losses: True if insured losses should be computed :param time_span: the time span considered :param tses: time of the stochastic event set :param loss_curve_resolution: the curve resolution, i.e. the number of points which defines the loss curves :param float asset_correlation: a number ranging from 0 to 1 representing the correlation between the generated loss ratios """ loss_ratio_curves = OrderedDict() event_loss_table = dict() for hazard_output_id, hazard_data in hazard.items(): hazard_getter, _ = hazard_data (loss_curve_id, loss_map_ids, mean_loss_curve_id, quantile_loss_curve_ids, insured_curve_id, aggregate_loss_curve_id) = ( output_containers[hazard_output_id]) # FIXME(lp). We should not pass the exact same seed for # different hazard calculator = api.ProbabilisticEventBased( vulnerability_function, curve_resolution=loss_curve_resolution, time_span=time_span, tses=tses, seed=seed, correlation=asset_correlation) with logs.tracing('getting input data from db'): assets, gmvs_ruptures, missings = hazard_getter() if len(assets): ground_motion_values = numpy.array(gmvs_ruptures)[:, 0] rupture_id_matrix = numpy.array(gmvs_ruptures)[:, 1] else: # we are relying on the fact that if all the hazard_getter # in this task will either return some results or they all # return an empty result set. logs.LOG.info("Exit from task as no asset could be processed") base.signal_task_complete( job_id=job_id, event_loss_table=dict(), num_items=len(missings)) return with logs.tracing('computing risk'): loss_ratio_matrix, loss_ratio_curves[hazard_output_id] = ( calculator(ground_motion_values)) with logs.tracing('writing results'): with db.transaction.commit_on_success(using='reslt_writer'): for i, loss_ratio_curve in enumerate( loss_ratio_curves[hazard_output_id]): asset = assets[i] # loss curves general.write_loss_curve( loss_curve_id, asset, loss_ratio_curve) # loss maps for poe in conditional_loss_poes: general.write_loss_map_data( loss_map_ids[poe], asset, scientific.conditional_loss_ratio( loss_ratio_curve, poe)) # insured losses if insured_losses: insured_loss_curve = scientific.event_based( scientific.insured_losses( loss_ratio_matrix[i], asset.value, asset.deductible, asset.ins_limit), tses, time_span, loss_curve_resolution) insured_loss_curve.abscissae = ( insured_loss_curve.abscissae / asset.value) general.write_loss_curve( insured_curve_id, asset, insured_loss_curve) # update the event loss table of this task for i, asset in enumerate(assets): for j, rupture_id in enumerate(rupture_id_matrix[i]): loss = loss_ratio_matrix[i][j] * asset.value event_loss_table[rupture_id] = ( event_loss_table.get(rupture_id, 0) + loss) # update the aggregate losses aggregate_losses = sum( loss_ratio_matrix[i] * asset.value for i, asset in enumerate(assets)) general.update_aggregate_losses( aggregate_loss_curve_id, aggregate_losses) # compute mean and quantile loss curves if multiple hazard # realizations are computed if len(hazard) > 1 and (mean_loss_curve_id or quantile_loss_curve_ids): weights = [data[1] for _, data in hazard.items()] with logs.tracing('writing curve statistics'): with db.transaction.commit_on_success(using='reslt_writer'): loss_ratio_curve_matrix = loss_ratio_curves.values() # here we are relying on the fact that assets do not # change across different logic tree realizations (as # the hazard grid does not change, so the hazard # getters always returns the same assets) for i, asset in enumerate(assets): general.curve_statistics( asset, loss_ratio_curve_matrix[i], weights, mean_loss_curve_id, quantile_loss_curve_ids, hazard_montecarlo_p, assume_equal="image") base.signal_task_complete(job_id=job_id, num_items=len(assets) + len(missings), event_loss_table=event_loss_table)
def classical(job_id, assets, hazard_getter_name, hazard, vulnerability_function, output_containers, lrem_steps_per_interval, conditional_loss_poes, hazard_montecarlo_p): """ Celery task for the classical risk calculator. Instantiates risklib calculators, computes losses for the given assets and stores the results to db in a single transaction. :param int job_id: ID of the currently running job :param assets: iterator over :class:`openquake.engine.db.models.ExposureData` to take into account :param str hazard_getter_name: class name of a class defined in the :mod:`openquake.engine.calculators.risk.hazard_getters` to be instantiated to get the hazard curves :param dict hazard: A dictionary mapping hazard Output ID to HazardCurve ID :param dict output_containers: A dictionary mapping hazard Output ID to a tuple (a, b) where a is the ID of the :class:`openquake.engine.db.models.LossCurve` output container used to store the computed loss curves and b is a dictionary that maps poe to ID of the :class:`openquake.engine.db.models.LossMap` used to store the loss maps :param int lrem_steps_per_interval: Steps per interval used to compute the Loss Ratio Exceedance matrix :param conditional_loss_poes: The poes taken into account to compute the loss maps :param bool hazard_montecarlo_p: (meaningful only if curve statistics are computed). Wheter or not the hazard calculation is montecarlo based """ asset_outputs = OrderedDict() for hazard_output_id, hazard_data in hazard.items(): hazard_id, _ = hazard_data (loss_curve_id, loss_map_ids, mean_loss_curve_id, quantile_loss_curve_ids) = ( output_containers[hazard_output_id]) hazard_getter = general.hazard_getter(hazard_getter_name, hazard_id) calculator = api.Classical( vulnerability_function, lrem_steps_per_interval) # if we need to compute the loss maps, we add the proper risk # aggregator if conditional_loss_poes: calculator = api.ConditionalLosses( conditional_loss_poes, calculator) with logs.tracing('getting hazard'): hazard_curves = [hazard_getter(asset.site) for asset in assets] with logs.tracing('computing risk over %d assets' % len(assets)): asset_outputs[hazard_output_id] = calculator(assets, hazard_curves) with logs.tracing('writing results'): with transaction.commit_on_success(using='reslt_writer'): for i, asset_output in enumerate( asset_outputs[hazard_output_id]): general.write_loss_curve( loss_curve_id, assets[i], asset_output) if asset_output.conditional_losses: general.write_loss_map( loss_map_ids, assets[i], asset_output) if len(hazard) > 1 and (mean_loss_curve_id or quantile_loss_curve_ids): weights = [data[1] for _, data in hazard.items()] with logs.tracing('writing curve statistics'): with transaction.commit_on_success(using='reslt_writer'): for i, asset in enumerate(assets): general.curve_statistics( asset, [asset_output[i].loss_ratio_curve for asset_output in asset_outputs.values()], weights, mean_loss_curve_id, quantile_loss_curve_ids, hazard_montecarlo_p, assume_equal="support") base.signal_task_complete(job_id=job_id, num_items=len(assets))