コード例 #1
0
ファイル: ops.py プロジェクト: ubdsgroup/wikienergy
    def na_op(x, y):
        try:
            result = expressions.evaluate(op,
                                          str_rep,
                                          x,
                                          y,
                                          raise_on_error=True,
                                          **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, pd.Series, pd.Index)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                mask = notnull(x) & notnull(y)
                result[mask] = op(x[mask], _values_from_object(y[mask]))
            elif isinstance(x, np.ndarray):
                result = np.empty(len(x), dtype=x.dtype)
                mask = notnull(x)
                result[mask] = op(x[mask], y)
            else:
                raise TypeError(
                    "{typ} cannot perform the operation {op}".format(
                        typ=type(x).__name__, op=str_rep))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result
コード例 #2
0
ファイル: ops.py プロジェクト: agijsberts/pandas
    def na_op(x, y):
        try:
            result = expressions.evaluate(
                op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, pd.Series)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notnull(xrav) & notnull(yrav)
                xrav = xrav[mask]
                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    result[mask] = op(xrav, yrav)
            elif hasattr(x,'size'):
                result = np.empty(x.size, dtype=x.dtype)
                mask = notnull(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between objects "
                                "of type {x} and {y}".format(op=name,x=type(x),y=type(y)))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = com._fill_zeros(result, x, y, name, fill_zeros)

        return result
コード例 #3
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(
                op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, pd.Series)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notnull(xrav) & notnull(yrav)
                xrav = xrav[mask]
                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    result[mask] = op(xrav, yrav)
            else:
                result = np.empty(x.size, dtype=x.dtype)
                mask = notnull(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    result[mask] = op(xrav, y)

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = com._fill_zeros(result, x, y, name, fill_zeros)

        return result
コード例 #4
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(
                op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, pd.Series)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notnull(xrav) & notnull(yrav)
                xrav = xrav[mask]
                yrav = yrav[mask]
                if np.prod(xrav.shape) and np.prod(yrav.shape):
                    result[mask] = op(xrav, yrav)
            elif hasattr(x,'size'):
                result = np.empty(x.size, dtype=x.dtype)
                mask = notnull(xrav)
                xrav = xrav[mask]
                if np.prod(xrav.shape):
                    result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between objects "
                                "of type {x} and {y}".format(op=name,x=type(x),y=type(y)))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = com._fill_zeros(result, x, y, name, fill_zeros)

        return result
コード例 #5
0
ファイル: panel.py プロジェクト: ErwcPKerr/pandas
            def na_op(x, y):
                try:
                    result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
                except TypeError:
                    result = op(x, y)

                # handles discrepancy between numpy and numexpr on division/mod by 0
                # though, given that these are generally (always?) non-scalars, I'm
                # not sure whether it's worth it at the moment
                result = com._fill_zeros(result, y, fill_zeros)
                return result
コード例 #6
0
ファイル: ops.py プロジェクト: Vistarino/pandas
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          raise_on_error=True, **eval_kwargs)
        except TypeError:
            result = pa.empty(len(x), dtype=x.dtype)
            mask = notnull(x)
            result[mask] = op(x[mask], y)
            result, changed = com._maybe_upcast_putmask(result, -mask, pa.NA)

        result = com._fill_zeros(result, y, fill_zeros)
        return result
コード例 #7
0
            def na_op(x, y):
                try:
                    result = expressions.evaluate(op, str_rep, x, y,
                                                  raise_on_error=True,
                                                  **eval_kwargs)
                except TypeError:
                    result = op(x, y)

                # handles discrepancy between numpy and numexpr on division/mod
                # by 0 though, given that these are generally (always?)
                # non-scalars, I'm not sure whether it's worth it at the moment
                result = com._fill_zeros(result, y, fill_zeros)
                return result
コード例 #8
0
ファイル: ops.py プロジェクト: Martbov/InformationRetrieval
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:

            # TODO: might need to find_common_type here?
            result = np.empty(len(x), dtype=x.dtype)
            mask = notnull(x)
            result[mask] = op(x[mask], y)
            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result
コード例 #9
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          raise_on_error=True, **eval_kwargs)
        except TypeError:

            # TODO: might need to find_common_type here?
            result = pa.empty(len(x), dtype=x.dtype)
            mask = notnull(x)
            result[mask] = op(x[mask], y)
            result, changed = com._maybe_upcast_putmask(result, ~mask, pa.NA)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result
コード例 #10
0
ファイル: ops.py プロジェクト: spencerlyon2/pandas
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            if isinstance(y, (pa.Array, pd.Series)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                mask = notnull(x) & notnull(y)
                result[mask] = op(x[mask], y[mask])
            else:
                result = pa.empty(len(x), dtype=x.dtype)
                mask = notnull(x)
                result[mask] = op(x[mask], y)

            result, changed = com._maybe_upcast_putmask(result, -mask, pa.NA)

        result = com._fill_zeros(result, y, fill_zeros)
        return result
コード例 #11
0
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          raise_on_error=True, **eval_kwargs)
        except TypeError:
            if isinstance(y, (pa.Array, pd.Series)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                mask = notnull(x) & notnull(y)
                result[mask] = op(x[mask], y[mask])
            else:
                result = pa.empty(len(x), dtype=x.dtype)
                mask = notnull(x)
                result[mask] = op(x[mask], y)

            result, changed = com._maybe_upcast_putmask(result, ~mask, pa.NA)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result
コード例 #12
0
ファイル: ops.py プロジェクト: Martbov/InformationRetrieval
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, pd.Series, pd.Index)):
                dtype = np.find_common_type([x.dtype, y.dtype], [])
                result = np.empty(x.size, dtype=dtype)
                mask = notnull(x) & notnull(y)
                result[mask] = op(x[mask], _values_from_object(y[mask]))
            elif isinstance(x, np.ndarray):
                result = np.empty(len(x), dtype=x.dtype)
                mask = notnull(x)
                result[mask] = op(x[mask], y)
            else:
                raise TypeError("{typ} cannot perform the operation {op}".format(typ=type(x).__name__, op=str_rep))

            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result
コード例 #13
0
ファイル: ops.py プロジェクト: Vistarino/pandas
    def na_op(x, y):
        try:
            result = expressions.evaluate(
                op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            result = np.empty(x.size, dtype=x.dtype)
            if isinstance(y, (np.ndarray, pd.Series)):
                yrav = y.ravel()
                mask = notnull(xrav) & notnull(yrav)
                result[mask] = op(xrav[mask], yrav[mask])
            else:
                mask = notnull(xrav)
                result[mask] = op(xrav[mask], y)

            result, changed = com._maybe_upcast_putmask(result, -mask, np.nan)
            result = result.reshape(x.shape)

        result = com._fill_zeros(result, y, fill_zeros)

        return result