def parse_cameras(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): json_cameras_intrinsics = json_data['cameras'] views = json_data['shots'] cams = [] for view_name in views: view = views[view_name] camera = Camera() camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._relative_fp = view_name camera._absolute_fp = os.path.join(image_dp, view_name) intrinsic_key = view['camera'] focal_length, cx, cy, width, height, radial_distortion = OpenSfMJSONFileHandler.convert_intrinsics( json_cameras_intrinsics[intrinsic_key], camera._relative_fp, suppress_distortion_warnings, op) camera.height = height camera.width = width camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) rodrigues_vec = np.array(view['rotation'], dtype=float) rot_mat = OpenSfMJSONFileHandler.rodrigues_to_matrix(rodrigues_vec) camera.set_rotation_mat(rot_mat) camera.set_camera_translation_vector_after_rotation( np.array(view['translation'], dtype=float)) cams.append(camera) return cams
def _parse_open3d_log_file(open3d_ifp, image_dp, image_relative_fp_list, image_fp_type, op): cams = [] with open(open3d_ifp, 'r') as open3d_file: lines = open3d_file.readlines() # Chunk size: 1 line meta data, 4 lines for the matrix chunk_size = 5 assert len(lines) % chunk_size == 0 chunks = Open3DFileHandler._chunker(lines, chunk_size) if len(chunks) != len(image_relative_fp_list): # Create some dummy names for missing images image_relative_fp_list = Open3DFileHandler._create_dummy_fp_list( len(chunks)) for chunk, image_relative_fp in zip(chunks, image_relative_fp_list): meta_data = chunk[0] matrix_list = [ Open3DFileHandler._read_matrix_row(chunk[1]), Open3DFileHandler._read_matrix_row(chunk[2]), Open3DFileHandler._read_matrix_row(chunk[3])] # Note: the transformation matrix in the .json file is the inverse of # the transformation matrix in the .log file extrinsic_matrix = np.asarray(matrix_list, dtype=float) cam = Camera() cam.image_fp_type = image_fp_type cam.image_dp = image_dp cam._relative_fp = image_relative_fp image_absolute_fp = os.path.join(image_dp, image_relative_fp) cam._absolute_fp = image_absolute_fp # Accuracy of rotation matrices is too low => disable rotation test cam.set_4x4_cam_to_world_mat( extrinsic_matrix, check_rotation=False) cams.append(cam) return cams
def _parse_open3d_json_file(open3d_ifp, image_dp, image_relative_fp_list, image_fp_type, op): cams = [] with open(open3d_ifp, 'r') as open3d_file: json_data = json.load(open3d_file) parameters = json_data['parameters'] if len(parameters) != len(image_relative_fp_list): # Create some dummy names for missing images image_relative_fp_list = Open3DFileHandler._create_dummy_fp_list( len(parameters)) for pinhole_camera_parameter, image_relative_fp in zip(parameters, image_relative_fp_list): cam = Camera() cam.image_fp_type = image_fp_type cam.image_dp = image_dp cam._relative_fp = image_relative_fp cam._absolute_fp = os.path.join(image_dp, image_relative_fp) extrinsic = pinhole_camera_parameter['extrinsic'] # Note: the transformation matrix in the .json file is the inverse of # the transformation matrix in the .log file extrinsic_mat = np.linalg.inv( np.array(extrinsic, dtype=float).reshape((4,4)).T) intrinsic = pinhole_camera_parameter['intrinsic'] cam.width = intrinsic['width'] cam.height = intrinsic['height'] # Accuracy of rotation matrices is too low => disable test cam.set_4x4_cam_to_world_mat(extrinsic_mat, check_rotation=False) intrinsic = intrinsic['intrinsic_matrix'] intrinsic_mat = np.array(intrinsic, dtype=float).reshape((3,3)).T cam.set_calibration_mat(intrinsic_mat) cams.append(cam) return cams
def _parse_cameras_from_json_data(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): cams = [] image_index_to_camera_index = {} is_valid_file = 'views' in json_data and 'intrinsics' in json_data and 'poses' in json_data if not is_valid_file: op.report({ 'ERROR' }, 'FILE FORMAT ERROR: Incorrect SfM/JSON file. Must contain the SfM reconstruction results: ' + 'view, intrinsics and poses.') return cams, image_index_to_camera_index views = json_data['views'] # is a list of dicts (view) intrinsics = json_data['intrinsics'] # is a list of dicts (intrinsic) extrinsics = json_data['poses'] # is a list of dicts (extrinsic) # IMPORTANT: # Views contain the number of input images # Extrinsics may contain only a subset of views! # (Not all views are necessarily contained in the reconstruction) for rec_index, extrinsic in enumerate(extrinsics): camera = Camera() view_index = int(extrinsic['poseId']) image_index_to_camera_index[view_index] = rec_index corresponding_view = get_element(views, "poseId", view_index, op) camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._absolute_fp = str(corresponding_view['path']) camera._relative_fp = os.path.basename( str(corresponding_view['path'])) camera._undistorted_relative_fp = str(extrinsic['poseId']) + '.exr' if image_dp is None: camera._undistorted_absolute_fp = None else: camera._undistorted_absolute_fp = os.path.join( image_dp, camera._undistorted_relative_fp) camera.width = int(corresponding_view['width']) camera.height = int(corresponding_view['height']) id_intrinsic = int(corresponding_view['intrinsicId']) intrinsic_params = get_element(intrinsics, "intrinsicId", id_intrinsic, op) focal_length = float(intrinsic_params['pxFocalLength']) cx = float(intrinsic_params['principalPoint'][0]) cy = float(intrinsic_params['principalPoint'][1]) if 'distortionParams' in intrinsic_params and len( intrinsic_params['distortionParams']) > 0: # TODO proper handling of distortion parameters radial_distortion = float( intrinsic_params['distortionParams'][0]) else: radial_distortion = 0.0 if not suppress_distortion_warnings: check_radial_distortion(radial_distortion, camera._relative_fp, op) camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) extrinsic_params = extrinsic['pose']['transform'] cam_rotation_list = extrinsic_params['rotation'] camera.set_rotation_mat( np.array(cam_rotation_list, dtype=float).reshape(3, 3).T) camera.set_camera_center_after_rotation( np.array(extrinsic_params['center'], dtype=float)) camera.view_index = view_index cams.append(camera) return cams, image_index_to_camera_index
def parse_cameras(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): views = {item['key']: item for item in json_data['views']} intrinsics = {item['key']: item for item in json_data['intrinsics']} extrinsics = {item['key']: item for item in json_data['extrinsics']} # IMPORTANT: # Views contain the description about the dataset and attribute to Pose and Intrinsic data. # View -> id_pose, id_intrinsic # Since sometimes some views cannot be localized, there is some missing pose and intrinsic data. # Extrinsics may contain only a subset of views! (Potentially not all views are contained in the reconstruction) cams = [] # Iterate over views, and create camera if Intrinsic and Pose data exist for id, view in views.items(): # Iterate over views id_view = view[ 'key'] # Should be equal to view['value']['ptr_wrapper']['data']['id_view'] view_data = view['value']['ptr_wrapper']['data'] id_pose = view_data['id_pose'] id_intrinsic = view_data['id_intrinsic'] # Check if the view is having corresponding Pose and Intrinsic data if id_pose in extrinsics.keys() and \ id_intrinsic in intrinsics.keys(): camera = Camera() camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._relative_fp = os.path.join(view_data['local_path'], view_data['filename']) camera._absolute_fp = os.path.join(json_data['root_path'], view_data['local_path'], view_data['filename']) camera.width = view_data['width'] camera.height = view_data['height'] id_intrinsic = view_data['id_intrinsic'] # handle intrinsic params intrinsic_data = intrinsics[int( id_intrinsic)]['value']['ptr_wrapper']['data'] polymorphic_name = intrinsics[int( id_intrinsic)]['value']['polymorphic_name'] if polymorphic_name == 'spherical': camera.set_panoramic_type( Camera.panoramic_type_equirectangular) # create some dummy values focal_length = 0 cx = camera.width / 2 cy = camera.height / 2 else: focal_length = intrinsic_data['focal_length'] principal_point = intrinsic_data['principal_point'] cx = principal_point[0] cy = principal_point[1] # For Radial there are several options: "None", disto_k1, disto_k3 if 'disto_k3' in intrinsic_data: radial_distortion = [ float(intrinsic_data['disto_k3'][0]), float(intrinsic_data['disto_k3'][1]), float(intrinsic_data['disto_k3'][2]) ] elif 'disto_k1' in intrinsic_data: radial_distortion = float(intrinsic_data['disto_k1'][0]) else: # No radial distortion, i.e. pinhole camera model radial_distortion = 0 if not suppress_distortion_warnings: check_radial_distortion(radial_distortion, camera._relative_fp, op) camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) extrinsic_params = extrinsics[id_pose] cam_rotation_list = extrinsic_params['value']['rotation'] camera.set_rotation_mat( np.array(cam_rotation_list, dtype=float)) camera.set_camera_center_after_rotation( np.array(extrinsic_params['value']['center'], dtype=float)) camera.view_index = id_view cams.append(camera) return cams