def export_selected_cameras_and_vertices_of_meshes(op, odp): op.report({'INFO'}, 'export_selected_cameras_and_vertices_of_meshes: ...') cameras = [] points = [] point_index = 0 camera_index = 0 for obj in bpy.context.selected_objects: if obj.type == 'CAMERA': op.report({'INFO'}, 'obj.name: ' + str(obj.name)) calibration_mat = get_calibration_mat(op, obj) # op.report({'INFO'}, 'calibration_mat:' ) # op.report({'INFO'}, str(calibration_mat)) camera_matrix_computer_vision = get_computer_vision_camera_matrix( op, obj) cam = Camera() cam.id = camera_index cam.set_relative_fp(str(obj.name), Camera.IMAGE_FP_TYPE_NAME) cam.image_dp = odp cam.width = bpy.context.scene.render.resolution_x cam.height = bpy.context.scene.render.resolution_y cam.set_calibration(calibration_mat, radial_distortion=0) cam.set_4x4_cam_to_world_mat(camera_matrix_computer_vision) cameras.append(cam) camera_index += 1 else: if obj.data is not None: obj_points = [] for vert in obj.data.vertices: coord_world = obj.matrix_world @ vert.co obj_points.append( Point(coord=coord_world, color=[0, 255, 0], id=point_index, scalars=[])) point_index += 1 points += obj_points op.report({'INFO'}, 'export_selected_cameras_and_vertices_of_meshes: Done') return cameras, points
def convert_cameras(id_to_col_cameras, id_to_col_images, image_dp, image_fp_type, suppress_distortion_warnings, op): # From photogrammetry_importer\ext\read_write_model.py # CameraModel = collections.namedtuple( # "CameraModel", ["model_id", "model_name", "num_params"]) # Camera = collections.namedtuple( # "Camera", ["id", "model", "width", "height", "params"]) # BaseImage = collections.namedtuple( # "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]) cameras = [] for col_image in id_to_col_images.values(): current_camera = Camera() current_camera.id = col_image.id current_camera.set_quaternion(col_image.qvec) current_camera.set_camera_translation_vector_after_rotation( col_image.tvec) current_camera.image_fp_type = image_fp_type current_camera.image_dp = image_dp current_camera._relative_fp = col_image.name camera_model = id_to_col_cameras[col_image.camera_id] # op.report({'INFO'}, 'image_id: ' + str(col_image.id)) # op.report({'INFO'}, 'camera_id: ' + str(col_image.camera_id)) # op.report({'INFO'}, 'camera_model: ' + str(camera_model)) current_camera.width = camera_model.width current_camera.height = camera_model.height focal_length, cx, cy, r = parse_camera_param_list(camera_model) if not suppress_distortion_warnings: check_radial_distortion(r, current_camera._relative_fp, op) camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) current_camera.set_calibration(camera_calibration_matrix, radial_distortion=0) cameras.append(current_camera) return cameras
def parse_cameras(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): json_cameras_intrinsics = json_data['cameras'] views = json_data['shots'] cams = [] for view_name in views: view = views[view_name] camera = Camera() camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._relative_fp = view_name camera._absolute_fp = os.path.join(image_dp, view_name) intrinsic_key = view['camera'] focal_length, cx, cy, width, height, radial_distortion = OpenSfMJSONFileHandler.convert_intrinsics( json_cameras_intrinsics[intrinsic_key], camera._relative_fp, suppress_distortion_warnings, op) camera.height = height camera.width = width camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) rodrigues_vec = np.array(view['rotation'], dtype=float) rot_mat = OpenSfMJSONFileHandler.rodrigues_to_matrix(rodrigues_vec) camera.set_rotation_mat(rot_mat) camera.set_camera_translation_vector_after_rotation( np.array(view['translation'], dtype=float)) cams.append(camera) return cams
def export_selected_cameras_and_vertices_of_meshes(op): op.report({'INFO'}, 'export_selected_cameras_and_vertices_of_meshes: ...') cameras = [] points = [] point_index = 0 camera_index = 0 for obj in bpy.context.selected_objects: if obj.type == 'CAMERA': op.report({'INFO'}, 'obj.name: ' + str(obj.name)) calibration_mat = get_calibration_mat(op, obj) # op.report({'INFO'}, 'calibration_mat:' ) # op.report({'INFO'}, str(calibration_mat)) camera_matrix_computer_vision = get_computer_vision_camera_matrix( op, obj) cam = Camera() cam.file_name = str('camera_index') cam.set_calibration(calibration_mat, radial_distortion=0) cam.set_4x4_cam_to_world_mat(camera_matrix_computer_vision) cameras.append(cam) camera_index += 1 else: if obj.data is not None: obj_points = [] for vert in obj.data.vertices: coord_world = obj.matrix_world * vert.co obj_points.append( Point(coord=coord_world, color=[255, 255, 255], measurements=[], id=point_index, scalars=[])) point_index += 1 points += obj_points op.report({'INFO'}, 'export_selected_cameras_and_vertices_of_meshes: Done') return cameras, points
def convert_cameras(id_to_col_cameras, id_to_col_images, op): # CameraModel = collections.namedtuple( # "CameraModel", ["model_id", "model_name", "num_params"]) # Camera = collections.namedtuple( # "Camera", ["id", "model", "width", "height", "params"]) # BaseImage = collections.namedtuple( # "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]) cameras = [] for col_image in id_to_col_images.values(): current_camera = Camera() current_camera.id = col_image.id current_camera.set_quaternion(col_image.qvec) current_camera.set_camera_translation_vector_after_rotation( col_image.tvec) current_camera.file_name = col_image.name camera_models = list(id_to_col_cameras.values()) # Blender supports only one camera model for all images assert len(camera_models) == 1 camera_model = camera_models[0] op.report({'INFO'}, 'camera_model: ' + str(camera_model)) current_camera.width = camera_model.width current_camera.height = camera_model.height focal_length, cx, cy = parse_camera_param_list(camera_model) camera_calibration_matrix = np.array([[focal_length, 0, 0], [0, focal_length, 0], [0, 0, 1]]) current_camera.set_calibration(camera_calibration_matrix, radial_distortion=0) current_camera.set_principal_point([cx, cy]) cameras.append(current_camera) return cameras
def _parse_cameras_from_json_data(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): cams = [] image_index_to_camera_index = {} is_valid_file = 'views' in json_data and 'intrinsics' in json_data and 'poses' in json_data if not is_valid_file: op.report({ 'ERROR' }, 'FILE FORMAT ERROR: Incorrect SfM/JSON file. Must contain the SfM reconstruction results: ' + 'view, intrinsics and poses.') return cams, image_index_to_camera_index views = json_data['views'] # is a list of dicts (view) intrinsics = json_data['intrinsics'] # is a list of dicts (intrinsic) extrinsics = json_data['poses'] # is a list of dicts (extrinsic) # IMPORTANT: # Views contain the number of input images # Extrinsics may contain only a subset of views! # (Not all views are necessarily contained in the reconstruction) for rec_index, extrinsic in enumerate(extrinsics): camera = Camera() view_index = int(extrinsic['poseId']) image_index_to_camera_index[view_index] = rec_index corresponding_view = get_element(views, "poseId", view_index, op) camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._absolute_fp = str(corresponding_view['path']) camera._relative_fp = os.path.basename( str(corresponding_view['path'])) camera._undistorted_relative_fp = str(extrinsic['poseId']) + '.exr' if image_dp is None: camera._undistorted_absolute_fp = None else: camera._undistorted_absolute_fp = os.path.join( image_dp, camera._undistorted_relative_fp) camera.width = int(corresponding_view['width']) camera.height = int(corresponding_view['height']) id_intrinsic = int(corresponding_view['intrinsicId']) intrinsic_params = get_element(intrinsics, "intrinsicId", id_intrinsic, op) focal_length = float(intrinsic_params['pxFocalLength']) cx = float(intrinsic_params['principalPoint'][0]) cy = float(intrinsic_params['principalPoint'][1]) if 'distortionParams' in intrinsic_params and len( intrinsic_params['distortionParams']) > 0: # TODO proper handling of distortion parameters radial_distortion = float( intrinsic_params['distortionParams'][0]) else: radial_distortion = 0.0 if not suppress_distortion_warnings: check_radial_distortion(radial_distortion, camera._relative_fp, op) camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) extrinsic_params = extrinsic['pose']['transform'] cam_rotation_list = extrinsic_params['rotation'] camera.set_rotation_mat( np.array(cam_rotation_list, dtype=float).reshape(3, 3).T) camera.set_camera_center_after_rotation( np.array(extrinsic_params['center'], dtype=float)) camera.view_index = view_index cams.append(camera) return cams, image_index_to_camera_index
def parse_cameras(json_data, image_dp, image_fp_type, suppress_distortion_warnings, op): views = {item['key']: item for item in json_data['views']} intrinsics = {item['key']: item for item in json_data['intrinsics']} extrinsics = {item['key']: item for item in json_data['extrinsics']} # IMPORTANT: # Views contain the description about the dataset and attribute to Pose and Intrinsic data. # View -> id_pose, id_intrinsic # Since sometimes some views cannot be localized, there is some missing pose and intrinsic data. # Extrinsics may contain only a subset of views! (Potentially not all views are contained in the reconstruction) cams = [] # Iterate over views, and create camera if Intrinsic and Pose data exist for id, view in views.items(): # Iterate over views id_view = view[ 'key'] # Should be equal to view['value']['ptr_wrapper']['data']['id_view'] view_data = view['value']['ptr_wrapper']['data'] id_pose = view_data['id_pose'] id_intrinsic = view_data['id_intrinsic'] # Check if the view is having corresponding Pose and Intrinsic data if id_pose in extrinsics.keys() and \ id_intrinsic in intrinsics.keys(): camera = Camera() camera.image_fp_type = image_fp_type camera.image_dp = image_dp camera._relative_fp = os.path.join(view_data['local_path'], view_data['filename']) camera._absolute_fp = os.path.join(json_data['root_path'], view_data['local_path'], view_data['filename']) camera.width = view_data['width'] camera.height = view_data['height'] id_intrinsic = view_data['id_intrinsic'] # handle intrinsic params intrinsic_data = intrinsics[int( id_intrinsic)]['value']['ptr_wrapper']['data'] polymorphic_name = intrinsics[int( id_intrinsic)]['value']['polymorphic_name'] if polymorphic_name == 'spherical': camera.set_panoramic_type( Camera.panoramic_type_equirectangular) # create some dummy values focal_length = 0 cx = camera.width / 2 cy = camera.height / 2 else: focal_length = intrinsic_data['focal_length'] principal_point = intrinsic_data['principal_point'] cx = principal_point[0] cy = principal_point[1] # For Radial there are several options: "None", disto_k1, disto_k3 if 'disto_k3' in intrinsic_data: radial_distortion = [ float(intrinsic_data['disto_k3'][0]), float(intrinsic_data['disto_k3'][1]), float(intrinsic_data['disto_k3'][2]) ] elif 'disto_k1' in intrinsic_data: radial_distortion = float(intrinsic_data['disto_k1'][0]) else: # No radial distortion, i.e. pinhole camera model radial_distortion = 0 if not suppress_distortion_warnings: check_radial_distortion(radial_distortion, camera._relative_fp, op) camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) extrinsic_params = extrinsics[id_pose] cam_rotation_list = extrinsic_params['value']['rotation'] camera.set_rotation_mat( np.array(cam_rotation_list, dtype=float)) camera.set_camera_center_after_rotation( np.array(extrinsic_params['value']['center'], dtype=float)) camera.view_index = id_view cams.append(camera) return cams
def _parse_cameras(input_file, num_cameras, camera_calibration_matrix, op): """ VisualSFM CAMERA coordinate system is the standard CAMERA coordinate system in computer vision (not the same as in computer graphics like in bundler, blender, etc.) That means the y axis in the image is pointing downwards (not upwards) the camera is looking along the positive z axis (points in front of the camera show a positive z value) The camera coordinate system in computer vision VISUALSFM uses camera matrices, which are rotated around the x axis by 180 degree i.e. the y and z axis of the CAMERA MATRICES are inverted therefore, the y and z axis of the TRANSLATION VECTOR are also inverted """ # op.report({'INFO'}, '_parse_cameras: ...') cameras = [] for i in range(num_cameras): line = input_file.readline() # Read the camera section # From the docs: # <Camera> = <File name> <focal length> <quaternion WXYZ> <camera center> <radial distortion> 0 line_values = line.split() file_name = os.path.basename(line_values[0]) focal_length = float(line_values[1]) quaternion_w = float(line_values[2]) quaternion_x = float(line_values[3]) quaternion_y = float(line_values[4]) quaternion_z = float(line_values[5]) quaternion = np.array( [quaternion_w, quaternion_x, quaternion_y, quaternion_z], dtype=float) camera_center_x = float(line_values[6]) camera_center_y = float(line_values[7]) camera_center_z = float(line_values[8]) center_vec = np.array( [camera_center_x, camera_center_y, camera_center_z]) radial_distortion = float(line_values[9]) if camera_calibration_matrix is None: # In this case, we have no information about the principal point # We assume that the principal point lies in the center camera_calibration_matrix = np.array([[focal_length, 0, 0], [0, focal_length, 0], [0, 0, 1]]) zero_value = float(line_values[10]) assert (zero_value == 0) current_camera = Camera() # Setting the quaternion also sets the rotation matrix current_camera.set_quaternion(quaternion) # Set the camera center after rotation # COMMENT FROM PBA CODE: # older format for compability # camera_data[i].SetQuaternionRotation(q); // quaternion from the file # camera_data[i].SetCameraCenterAfterRotation(c); // camera center from the file current_camera._center = center_vec # set the camera view direction as normal w.r.t world coordinates cam_view_vec_cam_coord = np.array([0, 0, 1]).T cam_rotation_matrix_inv = np.linalg.inv( current_camera.get_rotation_mat()) cam_view_vec_world_coord = cam_rotation_matrix_inv.dot( cam_view_vec_cam_coord) current_camera.normal = cam_view_vec_world_coord translation_vec = NVMFileHandler.compute_camera_coordinate_system_translation_vector( center_vec, current_camera.get_rotation_mat()) current_camera._translation_vec = translation_vec current_camera.set_calibration(camera_calibration_matrix, radial_distortion=radial_distortion) # op.report({'INFO'}, 'Calibration mat:') # op.report({'INFO'}, str(camera_calibration_matrix)) current_camera.file_name = file_name current_camera.id = i cameras.append(current_camera) # op.report({'INFO'}, '_parse_cameras: Done') return cameras
def parse_cameras(json_data, op): views = json_data['views'] intrinsics = json_data['intrinsics'] extrinsics = json_data['extrinsics'] # IMPORTANT: # Views contain the number of input images # Extrinsics may contain only a subset of views! (Potentially not all views are contained in the reconstruction) # Matching entries are determined by view['key'] == extrinsics['key'] cams = [] image_index_to_camera_index = {} for rec_index, extrinsic in enumerate( extrinsics): # Iterate over extrinsics, not views! camera = Camera() # The key is defined w.r.t. view indices (NOT reconstructed camera indices) view_index = int(extrinsic['key']) image_index_to_camera_index[view_index] = rec_index corresponding_view = views[view_index] camera.file_name = corresponding_view['value']['ptr_wrapper'][ 'data']['filename'] camera.width = corresponding_view['value']['ptr_wrapper']['data'][ 'width'] camera.height = corresponding_view['value']['ptr_wrapper']['data'][ 'height'] id_intrinsic = corresponding_view['value']['ptr_wrapper']['data'][ 'id_intrinsic'] # handle intrinsic params intrinsic_params = intrinsics[int( id_intrinsic)]['value']['ptr_wrapper']['data'] focal_length = intrinsic_params['focal_length'] principal_point = intrinsic_params['principal_point'] cx = principal_point[0] cy = principal_point[1] if 'disto_k3' in intrinsic_params: op.report({'INFO'}, '3 Radial Distortion Parameters are not supported') assert False # For Radial there are several options: "None", disto_k1, disto_k3 if 'disto_k1' in intrinsic_params: radial_distortion = float(intrinsic_params['disto_k1'][0]) else: # No radial distortion, i.e. pinhole camera model radial_distortion = 0 camera_calibration_matrix = np.array([[focal_length, 0, cx], [0, focal_length, cy], [0, 0, 1]]) camera.set_calibration(camera_calibration_matrix, radial_distortion) extrinsic_params = extrinsic['value'] cam_rotation_list = extrinsic_params['rotation'] camera.set_rotation_mat(np.array(cam_rotation_list, dtype=float)) camera.set_camera_center_after_rotation( np.array(extrinsic_params['center'], dtype=float)) camera.view_index = view_index cams.append(camera) return cams, image_index_to_camera_index