コード例 #1
0
def read_folder():
        # this function is usefull for amplitudes
        file_folder = '../data/SLICED_171020141500_130420150600/amplitude/'
        river_wl_fname = 'W_1_amplitude.all'
        wtype = "amplitude"
        wtype = None


        file_folder = os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), file_folder) )
        fnames = [ f for f in os.listdir(file_folder) if f.endswith(".all") ]
        path = os.path.dirname(sys.argv[0])


        y2 = read_waterlevel_values(os.path.abspath(os.path.join(path, file_folder, river_wl_fname) ), wtype=wtype, usecols=3)

        for fname in fnames:
            data_fname = os.path.abspath(os.path.join(path, file_folder, fname) )
            print data_fname
            
            
            y = read_waterlevel_values(data_fname, wtype=wtype, usecols=3)

            fig_name = os.path.abspath(os.path.join(path, file_folder, 'distribution_LOWTIDE_'+os.path.splitext(fname)[0]+'___-2.5_2.0.jpg') )
            plt_title = '{0}: Original signal LOW TIDE'.format(fname)
            with sns.axes_style("whitegrid"):
                plot_pandas.plot_statistical_analysis(y, data2=y2, save=True, figurename=fig_name, plot_title=plt_title, ylims=[-2.5, 2.0],
                    ylabel1="m AMSL",                                     xlabel1="number of data points",
                    ylabel2="Normal PDF", xlabel2="m AMSL",
                    ylabel3="Normal CDF",      xlabel3="m AMSL",
                    papersize='A4',
                    axeslabel_fontsize=18., title_fontsize=20., axesvalues_fontsize=18., annotation_fontsize=18., legend_fontsize=18.)
コード例 #2
0
def read_file():
    # this function is usefull for hydrographs from 1n file
    file_folder = '../data/SLICED_171020141500_130420150600/hydrographs/'
    file_name = 'Farge-ALL_10min.all'
    wtype = "waterlevel"
    usecols = [1, 2, 3, 4, 5, 6, 7]
    colnames = ['GW1', 'GW2', 'GW3', 'GW4', 'GW5', 'GW6', 'W1']
    wtype = "waterlevel"

    path = os.path.dirname(sys.argv[0])
    fname = os.path.abspath(os.path.join(path, file_folder, file_name) )
    print fname

    

    y2 = read_waterlevel_values(fname, usecols=[7], skiprows=2, delimiter=';')
    for col, name in zip(usecols, colnames):
        print name, col
        fig_name = os.path.abspath(os.path.join(path, file_folder, 'distribution_hydrograph_'+name+'__-3._5.0.pdf') )
        

        #y = read_waterlevel_values(fname, usecols=[col], skiprows=2, delimiter=';')
        y = process2pandas.read_hydrographs_into_pandas(fname, datetime_indexes=True, log=False, delimiter=';', usecols=[0, col], skiprows=1)
        #print y
        #print 'mean, std:', plot_pandas.calculate_mean_std(y)
        
        

        if not col == 7:
            data_river = y2
            pass
        else:
            data_river = None

        data_river = None
        

        plt_title = '{0}: Measured waterlevel'.format(name)
        with sns.axes_style("whitegrid"):
            plot_pandas.plot_statistical_analysis(y, data2=data_river, save=False, figurename=fig_name, plot_title=plt_title, ylims=[-3., 5.0],
                    ylabel1="m AMSL",                                     xlabel1="number of data points",
                    ylabel2="Normal PDF", xlabel2="m AMSL",
                    ylabel3="Normal CDF",      xlabel3="m AMSL",
                    papersize='A4',
                    axeslabel_fontsize=18., title_fontsize=20., axesvalues_fontsize=18., annotation_fontsize=18., legend_fontsize=18.)
コード例 #3
0
    

    path = os.path.dirname(sys.argv[0])
    fname = os.path.abspath(os.path.join(path, file_folder, file_name) )
    



    #-------------------------------------------------------------------
    #  WORKING WITH EXCEL SHEET
    #-------------------------------------------------------------------

    print 'reading data from XLX'
    data = process2pandas.read_xlx_into_pandas(fname, sheetname='Sheet1')
    #-------------------------------------------------------------------
    #  ACTUALLY PLOTTING
    #-------------------------------------------------------------------
    for well in save_fnames:
        print 'plotting... >>>', well
        fign = os.path.abspath(os.path.join(path, 'out', 'timelag_cyclic_statistics_'+well+'.pdf'))


        with sns.axes_style("whitegrid"):
            plot_pandas.plot_statistical_analysis(data[well], data2=None, save=False, figurename=fign,  plot_title='Timelag calculated for each out of 344 tidal cycles: {0}'.format(well),
                    ylims=None,
                    ylabel1="Timelag [min]",                              xlabel1="Tidal cycles",
                    ylabel2="Normal PDF", xlabel2="Timelag [min]",
                    ylabel3="Normal CDF",      xlabel3="Timelag [min]",
                    papersize='A4',
                    axeslabel_fontsize=18., title_fontsize=20., axesvalues_fontsize=18., annotation_fontsize=18., legend_fontsize=18.)