def chip_averaged(q,chi1,chi2,theta1,theta2,deltaphi,r=None,fref=None, M_msun=None): '''Averaged definition of chip. Eq (15) and Appendix A''' # Convert frequency to separation, if necessary if r is None and fref is None: raise ValueError elif r is not None and fref is not None: raise ValueError if r is None: if M_msun is None: raise ValueError # Eq A1 r = ftor_PN(fref, M_msun, q, chi1, chi2, theta1, theta2, deltaphi) #Compute constants of motion L = (r**0.5)*q/(1+q)**2 S1 = chi1/(1.+q)**2 S2 = (q**2)*chi2/(1.+q)**2 # Eq 5 chieff = (chi1*np.cos(theta1)+q*chi2*np.cos(theta2))/(1+q) # Eq A2 J = (L**2 + S1**2 + S2**2 + 2*L*(S1*np.cos(theta1) + S2*np.cos(theta2)) + 2*S1*S2*(np.sin(theta1)*np.sin(theta2)*np.cos(deltaphi) + np.cos(theta1)*np.cos(theta2)))**0.5 # Solve dSdt=0. Details in arXiv:1506.03492 Sminus,Splus=precession.Sb_limits(chieff,J,q,S1,S2,r) def integrand_numerator(S): '''chip(S)/dSdt(S)''' #Eq A3 theta1ofS = np.arccos( (1/(2*(1-q)*S1)) * ( (J**2-L**2-S**2)/L - 2*q*chieff/(1+q) ) ) #Eq A4 theta2ofS = np.arccos( (q/(2*(1-q)*S2)) * ( -(J**2-L**2-S**2)/L + 2*chieff/(1+q) ) ) # Eq A5 deltaphiofS = np.arccos( ( S**2-S1**2-S2**2 - 2*S1*S2*np.cos(theta1ofS)*np.cos(theta2ofS) ) / (2*S1*S2*np.sin(theta1ofS)*np.sin(theta2ofS)) ) # Eq A6 (prefactor cancels out) dSdtofS = np.sin(theta1ofS)*np.sin(theta2ofS)*np.sin(deltaphiofS)/S # Eq (15) chipofS = chip_generalized(q,chi1,chi2,theta1ofS,theta2ofS,deltaphiofS) return chipofS/dSdtofS numerator = scipy.integrate.quad(integrand_numerator, Sminus, Splus)[0] def integrand_denominator(S): '''1/dSdt(S)''' #Eq A3 theta1ofS = np.arccos( (1/(2*(1-q)*S1)) * ( (J**2-L**2-S**2)/L - 2*q*chieff/(1+q) ) ) #Eq A4 theta2ofS = np.arccos( (q/(2*(1-q)*S2)) * ( -(J**2-L**2-S**2)/L + 2*chieff/(1+q) ) ) # Eq A5 deltaphiofS = np.arccos( ( S**2-S1**2-S2**2 - 2*S1*S2*np.cos(theta1ofS)*np.cos(theta2ofS) ) / (2*S1*S2*np.sin(theta1ofS)*np.sin(theta2ofS)) ) # Eq A6 (prefactor cancels out) dSdtofS = np.sin(theta1ofS)*np.sin(theta2ofS)*np.sin(deltaphiofS)/S return 1/dSdtofS denominator = scipy.integrate.quad(integrand_denominator, Sminus, Splus)[0] return numerator/denominator
def parameter_selection(): ''' Selection of consistent parameters to describe the BH spin orientations, both at finite and infinitely large separation. Compute some quantities which characterize the spin-precession dynamics, such as morphology, precessional period and resonant angles. All quantities are given in total-mass units c=G=M=1. **Run using** import precession.test precession.test.parameter_selection() ''' print "\n *Parameter selection at finite separations*" q = 0.8 # Must be q<=1. Check documentation for q=1. chi1 = 1. # Must be chi1<=1 chi2 = 1. # Must be chi2<=1 M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2) # Total-mass units M=1 print "We study a binary with\n\tq=%.3f m1=%.3f m2=%.3f\n\tchi1=%.3f S1=%.3f\n\tchi2=%.3f S2=%.3f" % ( q, m1, m2, chi1, S1, chi2, S2) r = 100 * M # Must be r>10M for PN to be valid print "at separation\n\tr=%.3f" % r xi_min, xi_max = precession.xi_lim(q, S1, S2) Jmin, Jmax = precession.J_lim(q, S1, S2, r) Sso_min, Sso_max = precession.Sso_limits(S1, S2) print "The geometrical limits on xi,J and S are\n\t%.3f<=xi<=%.3f\n\t%.3f<=J<=%.3f\n\t%.3f<=S<=%.3f" % ( xi_min, xi_max, Jmin, Jmax, Sso_min, Sso_max) J = (Jmin + Jmax) / 2. print "We select a value of J\n\tJ=%.3f " % J St_min, St_max = precession.St_limits(J, q, S1, S2, r) print "This constrains the range of S to\n\t%.3f<=S<=%.3f" % (St_min, St_max) xi_low, xi_up = precession.xi_allowed(J, q, S1, S2, r) print "The allowed range of xi is\n\t%.3f<=xi<=%.3f" % (xi_low, xi_up) xi = (xi_low + xi_up) / 2. print "We select a value of xi\n\txi=%.3f" % xi test = (J >= min(precession.J_allowed(xi, q, S1, S2, r)) and J <= max(precession.J_allowed(xi, q, S1, S2, r))) print "Is our couple (xi,J) consistent?", test Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r) print "S oscillates between\n\tS-=%.3f\n\tS+=%.3f" % (Sb_min, Sb_max) S = (Sb_min + Sb_max) / 2. print "We select a value of S between S- and S+\n\tS=%.3f" % S t1, t2, dp, t12 = precession.parametric_angles(S, J, xi, q, S1, S2, r) print "The angles describing the spin orientations are\n\t(theta1,theta2,DeltaPhi)=(%.3f,%.3f,%.3f)" % ( t1, t2, dp) xi, J, S = precession.from_the_angles(t1, t2, dp, q, S1, S2, r) print "From the angles one can recovery\n\t(xi,J,S)=(%.3f,%.3f,%.3f)" % ( xi, J, S) print "\n *Features of spin precession*" t1_dp0, t2_dp0, t1_dp180, t2_dp180 = precession.resonant_finder( xi, q, S1, S2, r) print "The spin-orbit resonances for these values of J and xi are\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=0\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=pi" % ( t1_dp0, t2_dp0, t1_dp180, t2_dp180) tau = precession.precession_period(xi, J, q, S1, S2, r) print "We integrate dt/dS to calculate the precessional period\n\ttau=%.3f" % tau alpha = precession.alphaz(xi, J, q, S1, S2, r) print "We integrate Omega*dt/dS to find\n\talpha=%.3f" % alpha morphology = precession.find_morphology(xi, J, q, S1, S2, r) if morphology == -1: labelm = "Librating about DeltaPhi=0" elif morphology == 1: labelm = "Librating about DeltaPhi=pi" elif morphology == 0: labelm = "Circulating" print "The precessional morphology is: " + labelm sys.stdout = os.devnull # Ignore warnings phase, xi_transit_low, xi_transit_up = precession.phase_xi(J, q, S1, S2, r) sys.stdout = sys.__stdout__ # Restore warnings if phase == -1: labelp = "a single DeltaPhi~pi phase" elif phase == 2: labelp = "two DeltaPhi~pi phases, a Circulating phase" elif phase == 3: labelp = "a DeltaPhi~0, a Circulating, a DeltaPhi~pi phase" print "The coexisting phases are: " + labelp print "\n *Parameter selection at infinitely large separation*" print "We study a binary with\n\tq=%.3f m1=%.3f m2=%.3f\n\tchi1=%.3f S1=%.3f\n\tchi2=%.3f S2=%.3f" % ( q, m1, m2, chi1, S1, chi2, S2) print "at infinitely large separation" kappainf_min, kappainf_max = precession.kappainf_lim(S1, S2) print "The geometrical limits on xi and kappa_inf are\n\t%.3f<=xi<=%.3f\n\t %.3f<=kappa_inf<=%.3f" % ( xi_min, xi_max, kappainf_min, kappainf_max) print "We select a value of xi\n\txi=%.3f" % xi kappainf_low, kappainf_up = precession.kappainf_allowed(xi, q, S1, S2) print "This constrains the range of kappa_inf to\n\t%.3f<=kappa_inf<=%.3f" % ( kappainf_low, kappainf_up) kappainf = (kappainf_low + kappainf_up) / 2. print "We select a value of kappa_inf\n\tkappa_inf=%.3f" % kappainf test = (xi >= min(precession.xiinf_allowed(kappainf, q, S1, S2)) and xi <= max(precession.xiinf_allowed(kappainf, q, S1, S2))) print "Is our couple (xi,kappa_inf) consistent?", test t1_inf, t2_inf = precession.thetas_inf(xi, kappainf, q, S1, S2) print "The asymptotic (constant) values of theta1 and theta2 are\n\t(theta1_inf,theta2_inf)=(%.3f,%.3f)" % ( t1_inf, t2_inf) xi, kappainf = precession.from_the_angles_inf(t1_inf, t2_inf, q, S1, S2) print "From the angles one can recovery\n\t(xi,kappa_inf)=(%.3f,%.3f)" % ( xi, kappainf)
def compare_evolutions(): ''' Compare precession averaged and orbit averaged integrations. Plot the evolution of xi, J, S and their relative differences between the two approaches. Since precession-averaged estimates of S require a random sampling, this plot will look different every time this routine is executed. Output is saved in ./spin_angles.pdf. **Run using** import precession.test precession.test.compare_evolutions() ''' fig = pylab.figure(figsize=(6, 6)) # Create figure object and axes L, Ws, Wm, G = 0.85, 0.15, 0.3, 0.03 # Sizes ax_Sd = fig.add_axes([0, 0, L, Ws]) # bottom-small ax_S = fig.add_axes([0, Ws, L, Wm]) # bottom-main ax_Jd = fig.add_axes([0, Ws + Wm + G, L, Ws]) # middle-small ax_J = fig.add_axes([0, Ws + Ws + Wm + G, L, Wm]) # middle-main ax_xid = fig.add_axes([0, 2 * (Ws + Wm + G), L, Ws]) # top-small ax_xi = fig.add_axes([0, Ws + 2 * (Ws + Wm + G), L, Wm]) # top-main q = 0.8 # Mass ratio. Must be q<=1. chi1 = 0.6 # Primary spin. Must be chi1<=1 chi2 = 1. # Secondary spin. Must be chi2<=1 M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2) # Total-mass units M=1 ri = 100. * M # Initial separation. rf = 10. * M # Final separation. r_vals = numpy.linspace(ri, rf, 1001) # Output requested Ji = 2.24 # Magnitude of J: Jmin<J<Jmax as given by J_lim xi = -0.5 # Effective spin: xi_low<xi<xi_up as given by xi_allowed Jf_P = precession.evolve_J(xi, Ji, r_vals, q, S1, S2) # Pr.av. integration Sf_P = [ precession.samplingS(xi, J, q, S1, S2, r) for J, r in zip(Jf_P[0::10], r_vals[0::10]) ] # Resample S (reduce output for clarity) Sb_min, Sb_max = zip(*[ precession.Sb_limits(xi, J, q, S1, S2, r) for J, r in zip(Jf_P, r_vals) ]) # Envelopes S = numpy.average([precession.Sb_limits(xi, Ji, q, S1, S2, ri)]) # Initialize S Jf_O, xif_O, Sf_O = precession.orbit_averaged(Ji, xi, S, r_vals, q, S1, S2) # Orb.av. integration Pcol, Ocol, Dcol = 'blue', 'red', 'green' Pst, Ost = 'solid', 'dashed' ax_xi.axhline(xi, c=Pcol, ls=Pst, lw=2) # Plot xi, pr.av. (constant) ax_xi.plot(r_vals, xif_O, c=Ocol, ls=Ost, lw=2) # Plot xi, orbit averaged ax_xid.plot(r_vals, (xi - xif_O) / xi * 1e11, c=Dcol, lw=2) # Plot xi deviations (rescaled) ax_J.plot(r_vals, Jf_P, c=Pcol, ls=Pst, lw=2) # Plot J, pr.av. ax_J.plot(r_vals, Jf_O, c=Ocol, ls=Ost, lw=2) # Plot J, orb.av ax_Jd.plot(r_vals, (Jf_P - Jf_O) / Jf_O * 1e3, c=Dcol, lw=2) # Plot J deviations (rescaled) ax_S.scatter(r_vals[0::10], Sf_P, facecolor='none', edgecolor=Pcol) # Plot S, pr.av. (resampled) ax_S.plot(r_vals, Sb_min, c=Pcol, ls=Pst, lw=2) # Plot S, pr.av. (envelopes) ax_S.plot(r_vals, Sb_max, c=Pcol, ls=Pst, lw=2) # Plot S, pr.av. (envelopes) ax_S.plot(r_vals, Sf_O, c=Ocol, ls=Ost, lw=2) # Plot S, orb.av (evolved) ax_Sd.plot(r_vals[0::10], (Sf_P - Sf_O[0::10]) / Sf_O[0::10], c=Dcol, lw=2) # Plot S deviations # Options for nice plotting for ax in [ax_xi, ax_xid, ax_J, ax_Jd, ax_S, ax_Sd]: ax.set_xlim(ri, rf) ax.yaxis.set_label_coords(-0.16, 0.5) ax.spines['left'].set_lw(1.5) ax.spines['right'].set_lw(1.5) for ax in [ax_xi, ax_J, ax_S]: ax.spines['top'].set_lw(1.5) for ax in [ax_xid, ax_Jd, ax_Sd]: ax.axhline(0, c='black', ls='dotted') ax.spines['bottom'].set_lw(1.5) for ax in [ax_xid, ax_J, ax_Jd, ax_S]: ax.set_xticklabels([]) ax_xi.set_ylim(-0.55, -0.45) ax_J.set_ylim(0.4, 2.3) ax_S.set_ylim(0.24, 0.41) ax_xid.set_ylim(-0.2, 1.2) ax_Jd.set_ylim(-3, 5.5) ax_Sd.set_ylim(-0.7, 0.7) ax_xid.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5)) ax_Jd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(2)) ax_S.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.05)) ax_Sd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5)) ax_xi.xaxis.set_ticks_position('top') ax_xi.xaxis.set_label_position('top') ax_Sd.set_xlabel("$r/M$") ax_xi.set_xlabel("$r/M$") ax_xi.set_ylabel("$\\xi$") ax_J.set_ylabel("$J/M^2$") ax_S.set_ylabel("$S/M^2$") ax_xid.set_ylabel("$\\Delta\\xi/\\xi \;[10^{-11}]$") ax_Jd.set_ylabel("$\\Delta J/J \;[10^{-3}]$") ax_Sd.set_ylabel("$\\Delta S / S$") fig.savefig("compare_evolutions.pdf", bbox_inches='tight') # Save pdf file
def phase_resampling(): ''' Precessional phase resampling. The magnidute of the total spin S is sampled according to |dS/dt|^-1, which correspond to a flat distribution in t(S). Output is saved in ./phase_resampling.pdf and data stored in `precession.storedir'/phase_resampling_.dat **Run using** import precession.test precession.test.phase_resampling() ''' fig = pylab.figure(figsize=(6, 6)) #Create figure object and axes ax_tS = fig.add_axes([0, 0, 0.6, 0.6]) #bottom-left ax_td = fig.add_axes([0.65, 0, 0.3, 0.6]) #bottom-right ax_Sd = fig.add_axes([0, 0.65, 0.6, 0.3]) #top-left q = 0.5 # Mass ratio. Must be q<=1. chi1 = 0.3 # Primary spin. Must be chi1<=1 chi2 = 0.9 # Secondary spin. Must be chi2<=1 M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2) # Total-mass units M=1 r = 200. * M # Separation. Must be r>10M for PN to be valid J = 3.14 # Magnitude of J: Jmin<J<Jmax as given by J_lim xi = -0.01 # Effective spin: xi_low<xi<xi_up as given by xi_allowed Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r) # Limits in S tau = precession.precession_period(xi, J, q, S1, S2, r) # Precessional period d = 2000 # Size of the statistical sample precession.make_temp() # Create store directory, if necessary filename = precession.storedir + "/phase_resampling.dat" # Output file name if not os.path.isfile(filename): # Compute and store data if not present out = open(filename, "w") out.write("# q chi1 chi2 r J xi d\n") # Write header out.write("# " + ' '.join([str(x) for x in (q, chi1, chi2, r, J, xi, d)]) + "\n") # S and t values for the S(t) plot S_vals = numpy.linspace(Sb_min, Sb_max, d) t_vals = numpy.array([ abs( precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2, r)) for S in S_vals ]) # Sample values of S from |dt/dS|. Distribution should be flat in t. S_sample = numpy.array( [precession.samplingS(xi, J, q, S1, S2, r) for i in range(d)]) t_sample = numpy.array([ abs( precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2, r)) for S in S_sample ]) # Continuous distributions (normalized) S_distr = numpy.array([ 2. * abs(precession.dtdS(S, xi, J, q, S1, S2, r) / tau) for S in S_vals ]) t_distr = numpy.array([2. / tau for t in t_vals]) out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n") for Sv, tv, Ss, ts, Sd, td in zip(S_vals, t_vals, S_sample, t_sample, S_distr, t_distr): out.write(' '.join([str(x) for x in (Sv, tv, Ss, ts, Sd, td)]) + "\n") out.close() else: # Read S_vals, t_vals, S_sample, t_sample, S_distr, t_distr = numpy.loadtxt( filename, unpack=True) # Rescale all time values by 10^-6, for nicer plotting tau *= 1e-6 t_vals *= 1e-6 t_sample *= 1e-6 t_distr /= 1e-6 ax_tS.plot(S_vals, t_vals, c='blue', lw=2) # S(t) curve ax_td.plot(t_distr, t_vals, lw=2., c='red') # Continous distribution P(t) ax_Sd.plot(S_vals, S_distr, lw=2., c='red') # Continous distribution P(S) ax_td.hist(t_sample, bins=60, range=(0, tau / 2.), normed=True, histtype='stepfilled', color="blue", alpha=0.4, orientation="horizontal") # Histogram P(t) ax_Sd.hist(S_sample, bins=60, range=(Sb_min, Sb_max), normed=True, histtype='stepfilled', color="blue", alpha=0.4) # Histogram P(S) # Options for nice plotting ax_tS.set_xlim(Sb_min, Sb_max) ax_tS.set_ylim(0, tau / 2.) ax_tS.set_xlabel("$S/M^2$") ax_tS.set_ylabel("$t/(10^6 M)$") ax_td.set_xlim(0, 0.5) ax_td.set_ylim(0, tau / 2.) ax_td.set_xlabel("$P(t)$") ax_td.set_yticklabels([]) ax_Sd.set_xlim(Sb_min, Sb_max) ax_Sd.set_ylim(0, 20) ax_Sd.set_xticklabels([]) ax_Sd.set_ylabel("$P(S)$") fig.savefig("phase_resampling.pdf", bbox_inches='tight') # Save pdf file
def spin_angles(): ''' Binary dynamics on the precessional timescale. The spin angles theta1,theta2, DeltaPhi and theta12 are computed and plotted against the time variable, which is obtained integrating dS/dt. The morphology is also detected as indicated in the legend of the plot. Output is saved in ./spin_angles.pdf. **Run using** import precession.test precession.test.spin_angles() ''' fig = pylab.figure(figsize=(6, 6)) # Create figure object and axes ax_t1 = fig.add_axes([0, 1.95, 0.9, 0.5]) # first (top) ax_t2 = fig.add_axes([0, 1.3, 0.9, 0.5]) # second ax_dp = fig.add_axes([0, 0.65, 0.9, 0.5]) # third ax_t12 = fig.add_axes([0, 0, 0.9, 0.5]) # fourth (bottom) q = 0.7 # Mass ratio. Must be q<=1. chi1 = 0.6 # Primary spin. Must be chi1<=1 chi2 = 1. # Secondary spin. Must be chi2<=1 M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2) # Total-mass units M=1 r = 20 * M # Separation. Must be r>10M for PN to be valid J = 0.94 # Magnitude of J: Jmin<J<Jmax as given by J_lim xi_vals = [-0.41, -0.3, -0.22] # Effective spin: xi_low<xi<xi_up as given by xi_allowed for xi, color in zip(xi_vals, ['blue', 'green', 'red']): # Loop over three binaries tau = precession.precession_period(xi, J, q, S1, S2, r) # Period morphology = precession.find_morphology(xi, J, q, S1, S2, r) # Morphology if morphology == -1: labelm = "${\\rm L}0$" elif morphology == 1: labelm = "${\\rm L}\\pi$" elif morphology == 0: labelm = "${\\rm C}$" Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r) # Limits in S S_vals = numpy.linspace(Sb_min, Sb_max, 1000) # Create array, from S- to S+ S_go = S_vals # First half of the precession cycle: from S- to S+ t_go = map(lambda x: precession.t_of_S( S_go[0], x, Sb_min, Sb_max, xi, J, q, S1, S2, r, 0, sign=-1.), S_go) # Compute time values. Assume t=0 at S- t1_go, t2_go, dp_go, t12_go = zip(*[ precession.parametric_angles(S, J, xi, q, S1, S2, r) for S in S_go ]) # Compute the angles. dp_go = [-dp for dp in dp_go] # DeltaPhi<=0 in the first half of the cycle S_back = S_vals[:: -1] # Second half of the precession cycle: from S+ to S- t_back = map( lambda x: precession.t_of_S(S_back[0], x, Sb_min, Sb_max, xi, J, q, S1, S2, r, t_go[-1], sign=1.), S_back ) # Compute time, start from the last point of the first half t_go[-1] t1_back, t2_back, dp_back, t12_back = zip(*[ precession.parametric_angles(S, J, xi, q, S1, S2, r) for S in S_back ]) # Compute the angles. DeltaPhi>=0 in the second half of the cycle for ax, vec_go, vec_back in zip( [ax_t1, ax_t2, ax_dp, ax_t12], [t1_go, t2_go, dp_go, t12_go], [t1_back, t2_back, dp_back, t12_back]): # Plot all curves ax.plot([t / tau for t in t_go], vec_go, c=color, lw=2, label=labelm) ax.plot([t / tau for t in t_back], vec_back, c=color, lw=2) # Options for nice plotting for ax in [ax_t1, ax_t2, ax_dp, ax_t12]: ax.set_xlim(0, 1) ax.set_xlabel("$t/\\tau$") ax.set_xticks(numpy.linspace(0, 1, 5)) for ax in [ax_t1, ax_t2, ax_t12]: ax.set_ylim(0, numpy.pi) ax.set_yticks(numpy.linspace(0, numpy.pi, 5)) ax.set_yticklabels( ["$0$", "$\\pi/4$", "$\\pi/2$", "$3\\pi/4$", "$\\pi$"]) ax_dp.set_ylim(-numpy.pi, numpy.pi) ax_dp.set_yticks(numpy.linspace(-numpy.pi, numpy.pi, 5)) ax_dp.set_yticklabels( ["$-\\pi$", "$-\\pi/2$", "$0$", "$\\pi/2$", "$\\pi$"]) ax_t1.set_ylabel("$\\theta_1$") ax_t2.set_ylabel("$\\theta_2$") ax_t12.set_ylabel("$\\theta_{12}$") ax_dp.set_ylabel("$\\Delta\\Phi$") ax_t1.legend( loc='lower right', fontsize=18) # Fill the legend with the precessional morphology fig.savefig("spin_angles.pdf", bbox_inches='tight') # Save pdf file