Exemplo n.º 1
0
def chip_averaged(q,chi1,chi2,theta1,theta2,deltaphi,r=None,fref=None, M_msun=None):
    '''Averaged definition of chip. Eq (15) and Appendix A'''

    # Convert frequency to separation, if necessary
    if r is None and fref is None: raise ValueError
    elif r is not None and fref is not None: raise ValueError
    if r is None:
        if M_msun is None: raise ValueError
        # Eq A1
        r = ftor_PN(fref, M_msun, q, chi1, chi2, theta1, theta2, deltaphi)
    #Compute constants of motion
    L = (r**0.5)*q/(1+q)**2
    S1 = chi1/(1.+q)**2
    S2 = (q**2)*chi2/(1.+q)**2
    # Eq 5
    chieff = (chi1*np.cos(theta1)+q*chi2*np.cos(theta2))/(1+q)
    # Eq A2
    J = (L**2 + S1**2 + S2**2 + 2*L*(S1*np.cos(theta1) + S2*np.cos(theta2)) + 2*S1*S2*(np.sin(theta1)*np.sin(theta2)*np.cos(deltaphi) + np.cos(theta1)*np.cos(theta2)))**0.5
    # Solve dSdt=0. Details in arXiv:1506.03492
    Sminus,Splus=precession.Sb_limits(chieff,J,q,S1,S2,r)

    def integrand_numerator(S):
        '''chip(S)/dSdt(S)'''
        #Eq A3
        theta1ofS = np.arccos( (1/(2*(1-q)*S1)) * ( (J**2-L**2-S**2)/L - 2*q*chieff/(1+q) ) )
        #Eq A4
        theta2ofS = np.arccos( (q/(2*(1-q)*S2)) * ( -(J**2-L**2-S**2)/L + 2*chieff/(1+q) ) )
        # Eq A5
        deltaphiofS = np.arccos( ( S**2-S1**2-S2**2 - 2*S1*S2*np.cos(theta1ofS)*np.cos(theta2ofS) ) / (2*S1*S2*np.sin(theta1ofS)*np.sin(theta2ofS)) )
        # Eq A6 (prefactor cancels out)
        dSdtofS = np.sin(theta1ofS)*np.sin(theta2ofS)*np.sin(deltaphiofS)/S
        # Eq (15)
        chipofS = chip_generalized(q,chi1,chi2,theta1ofS,theta2ofS,deltaphiofS)
        return chipofS/dSdtofS

    numerator = scipy.integrate.quad(integrand_numerator, Sminus, Splus)[0]

    def integrand_denominator(S):
        '''1/dSdt(S)'''
        #Eq A3
        theta1ofS = np.arccos( (1/(2*(1-q)*S1)) * ( (J**2-L**2-S**2)/L - 2*q*chieff/(1+q) ) )
        #Eq A4
        theta2ofS = np.arccos( (q/(2*(1-q)*S2)) * ( -(J**2-L**2-S**2)/L + 2*chieff/(1+q) ) )
        # Eq A5
        deltaphiofS = np.arccos( ( S**2-S1**2-S2**2 - 2*S1*S2*np.cos(theta1ofS)*np.cos(theta2ofS) ) / (2*S1*S2*np.sin(theta1ofS)*np.sin(theta2ofS)) )
        # Eq A6 (prefactor cancels out)
        dSdtofS = np.sin(theta1ofS)*np.sin(theta2ofS)*np.sin(deltaphiofS)/S

        return 1/dSdtofS

    denominator = scipy.integrate.quad(integrand_denominator, Sminus, Splus)[0]

    return numerator/denominator
Exemplo n.º 2
0
def parameter_selection():
    '''
    Selection of consistent parameters to describe the BH spin orientations, both at finite and infinitely large separation. Compute some quantities which characterize the spin-precession dynamics, such as morphology, precessional period and resonant angles.
    All quantities are given in total-mass units c=G=M=1.

    **Run using**

        import precession.test
        precession.test.parameter_selection()
    '''

    print "\n *Parameter selection at finite separations*"
    q = 0.8  # Must be q<=1. Check documentation for q=1.
    chi1 = 1.  # Must be chi1<=1
    chi2 = 1.  # Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    print "We study a binary with\n\tq=%.3f  m1=%.3f  m2=%.3f\n\tchi1=%.3f  S1=%.3f\n\tchi2=%.3f  S2=%.3f" % (
        q, m1, m2, chi1, S1, chi2, S2)
    r = 100 * M  # Must be r>10M for PN to be valid
    print "at separation\n\tr=%.3f" % r
    xi_min, xi_max = precession.xi_lim(q, S1, S2)
    Jmin, Jmax = precession.J_lim(q, S1, S2, r)
    Sso_min, Sso_max = precession.Sso_limits(S1, S2)
    print "The geometrical limits on xi,J and S are\n\t%.3f<=xi<=%.3f\n\t%.3f<=J<=%.3f\n\t%.3f<=S<=%.3f" % (
        xi_min, xi_max, Jmin, Jmax, Sso_min, Sso_max)
    J = (Jmin + Jmax) / 2.
    print "We select a value of J\n\tJ=%.3f " % J
    St_min, St_max = precession.St_limits(J, q, S1, S2, r)
    print "This constrains the range of S to\n\t%.3f<=S<=%.3f" % (St_min,
                                                                  St_max)
    xi_low, xi_up = precession.xi_allowed(J, q, S1, S2, r)
    print "The allowed range of xi is\n\t%.3f<=xi<=%.3f" % (xi_low, xi_up)
    xi = (xi_low + xi_up) / 2.
    print "We select a value of xi\n\txi=%.3f" % xi
    test = (J >= min(precession.J_allowed(xi, q, S1, S2, r))
            and J <= max(precession.J_allowed(xi, q, S1, S2, r)))
    print "Is our couple (xi,J) consistent?", test
    Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r)
    print "S oscillates between\n\tS-=%.3f\n\tS+=%.3f" % (Sb_min, Sb_max)
    S = (Sb_min + Sb_max) / 2.
    print "We select a value of S between S- and S+\n\tS=%.3f" % S
    t1, t2, dp, t12 = precession.parametric_angles(S, J, xi, q, S1, S2, r)
    print "The angles describing the spin orientations are\n\t(theta1,theta2,DeltaPhi)=(%.3f,%.3f,%.3f)" % (
        t1, t2, dp)
    xi, J, S = precession.from_the_angles(t1, t2, dp, q, S1, S2, r)
    print "From the angles one can recovery\n\t(xi,J,S)=(%.3f,%.3f,%.3f)" % (
        xi, J, S)

    print "\n *Features of spin precession*"
    t1_dp0, t2_dp0, t1_dp180, t2_dp180 = precession.resonant_finder(
        xi, q, S1, S2, r)
    print "The spin-orbit resonances for these values of J and xi are\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=0\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=pi" % (
        t1_dp0, t2_dp0, t1_dp180, t2_dp180)
    tau = precession.precession_period(xi, J, q, S1, S2, r)
    print "We integrate dt/dS to calculate the precessional period\n\ttau=%.3f" % tau
    alpha = precession.alphaz(xi, J, q, S1, S2, r)
    print "We integrate Omega*dt/dS to find\n\talpha=%.3f" % alpha
    morphology = precession.find_morphology(xi, J, q, S1, S2, r)
    if morphology == -1: labelm = "Librating about DeltaPhi=0"
    elif morphology == 1: labelm = "Librating about DeltaPhi=pi"
    elif morphology == 0: labelm = "Circulating"
    print "The precessional morphology is: " + labelm
    sys.stdout = os.devnull  # Ignore warnings
    phase, xi_transit_low, xi_transit_up = precession.phase_xi(J, q, S1, S2, r)
    sys.stdout = sys.__stdout__  # Restore warnings
    if phase == -1: labelp = "a single DeltaPhi~pi phase"
    elif phase == 2: labelp = "two DeltaPhi~pi phases, a Circulating phase"
    elif phase == 3:
        labelp = "a DeltaPhi~0, a Circulating, a DeltaPhi~pi phase"
    print "The coexisting phases are: " + labelp

    print "\n *Parameter selection at infinitely large separation*"
    print "We study a binary with\n\tq=%.3f  m1=%.3f  m2=%.3f\n\tchi1=%.3f  S1=%.3f\n\tchi2=%.3f  S2=%.3f" % (
        q, m1, m2, chi1, S1, chi2, S2)
    print "at infinitely large separation"
    kappainf_min, kappainf_max = precession.kappainf_lim(S1, S2)
    print "The geometrical limits on xi and kappa_inf are\n\t%.3f<=xi<=%.3f\n\t %.3f<=kappa_inf<=%.3f" % (
        xi_min, xi_max, kappainf_min, kappainf_max)
    print "We select a value of xi\n\txi=%.3f" % xi
    kappainf_low, kappainf_up = precession.kappainf_allowed(xi, q, S1, S2)
    print "This constrains the range of kappa_inf to\n\t%.3f<=kappa_inf<=%.3f" % (
        kappainf_low, kappainf_up)
    kappainf = (kappainf_low + kappainf_up) / 2.
    print "We select a value of kappa_inf\n\tkappa_inf=%.3f" % kappainf
    test = (xi >= min(precession.xiinf_allowed(kappainf, q, S1, S2))
            and xi <= max(precession.xiinf_allowed(kappainf, q, S1, S2)))
    print "Is our couple (xi,kappa_inf) consistent?", test
    t1_inf, t2_inf = precession.thetas_inf(xi, kappainf, q, S1, S2)
    print "The asymptotic (constant) values of theta1 and theta2 are\n\t(theta1_inf,theta2_inf)=(%.3f,%.3f)" % (
        t1_inf, t2_inf)
    xi, kappainf = precession.from_the_angles_inf(t1_inf, t2_inf, q, S1, S2)
    print "From the angles one can recovery\n\t(xi,kappa_inf)=(%.3f,%.3f)" % (
        xi, kappainf)
Exemplo n.º 3
0
def compare_evolutions():
    '''
    Compare precession averaged and orbit averaged integrations. Plot the
    evolution of xi, J, S and their relative differences between the two
    approaches. Since precession-averaged estimates of S require a random
    sampling, this plot will look different every time this routine is executed.
    Output is saved in ./spin_angles.pdf.
    
    **Run using**

        import precession.test
        precession.test.compare_evolutions()
    '''

    fig = pylab.figure(figsize=(6, 6))  # Create figure object and axes
    L, Ws, Wm, G = 0.85, 0.15, 0.3, 0.03  # Sizes
    ax_Sd = fig.add_axes([0, 0, L, Ws])  # bottom-small
    ax_S = fig.add_axes([0, Ws, L, Wm])  # bottom-main
    ax_Jd = fig.add_axes([0, Ws + Wm + G, L, Ws])  # middle-small
    ax_J = fig.add_axes([0, Ws + Ws + Wm + G, L, Wm])  # middle-main
    ax_xid = fig.add_axes([0, 2 * (Ws + Wm + G), L, Ws])  # top-small
    ax_xi = fig.add_axes([0, Ws + 2 * (Ws + Wm + G), L, Wm])  # top-main

    q = 0.8  # Mass ratio. Must be q<=1.
    chi1 = 0.6  # Primary spin. Must be chi1<=1
    chi2 = 1.  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    ri = 100. * M  # Initial separation.
    rf = 10. * M  # Final separation.
    r_vals = numpy.linspace(ri, rf, 1001)  # Output requested
    Ji = 2.24  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.5  # Effective spin: xi_low<xi<xi_up as given by xi_allowed

    Jf_P = precession.evolve_J(xi, Ji, r_vals, q, S1, S2)  # Pr.av. integration
    Sf_P = [
        precession.samplingS(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P[0::10], r_vals[0::10])
    ]  # Resample S (reduce output for clarity)
    Sb_min, Sb_max = zip(*[
        precession.Sb_limits(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P, r_vals)
    ])  # Envelopes
    S = numpy.average([precession.Sb_limits(xi, Ji, q, S1, S2,
                                            ri)])  # Initialize S
    Jf_O, xif_O, Sf_O = precession.orbit_averaged(Ji, xi, S, r_vals, q, S1,
                                                  S2)  # Orb.av. integration

    Pcol, Ocol, Dcol = 'blue', 'red', 'green'
    Pst, Ost = 'solid', 'dashed'
    ax_xi.axhline(xi, c=Pcol, ls=Pst, lw=2)  # Plot xi, pr.av. (constant)
    ax_xi.plot(r_vals, xif_O, c=Ocol, ls=Ost, lw=2)  # Plot xi, orbit averaged
    ax_xid.plot(r_vals, (xi - xif_O) / xi * 1e11, c=Dcol,
                lw=2)  # Plot xi deviations (rescaled)
    ax_J.plot(r_vals, Jf_P, c=Pcol, ls=Pst, lw=2)  # Plot J, pr.av.
    ax_J.plot(r_vals, Jf_O, c=Ocol, ls=Ost, lw=2)  # Plot J, orb.av
    ax_Jd.plot(r_vals, (Jf_P - Jf_O) / Jf_O * 1e3, c=Dcol,
               lw=2)  # Plot J deviations (rescaled)
    ax_S.scatter(r_vals[0::10], Sf_P, facecolor='none',
                 edgecolor=Pcol)  # Plot S, pr.av. (resampled)
    ax_S.plot(r_vals, Sb_min, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sb_max, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sf_O, c=Ocol, ls=Ost, lw=2)  # Plot S, orb.av (evolved)
    ax_Sd.plot(r_vals[0::10], (Sf_P - Sf_O[0::10]) / Sf_O[0::10], c=Dcol,
               lw=2)  # Plot S deviations

    # Options for nice plotting
    for ax in [ax_xi, ax_xid, ax_J, ax_Jd, ax_S, ax_Sd]:
        ax.set_xlim(ri, rf)
        ax.yaxis.set_label_coords(-0.16, 0.5)
        ax.spines['left'].set_lw(1.5)
        ax.spines['right'].set_lw(1.5)
    for ax in [ax_xi, ax_J, ax_S]:
        ax.spines['top'].set_lw(1.5)
    for ax in [ax_xid, ax_Jd, ax_Sd]:
        ax.axhline(0, c='black', ls='dotted')
        ax.spines['bottom'].set_lw(1.5)
    for ax in [ax_xid, ax_J, ax_Jd, ax_S]:
        ax.set_xticklabels([])
    ax_xi.set_ylim(-0.55, -0.45)
    ax_J.set_ylim(0.4, 2.3)
    ax_S.set_ylim(0.24, 0.41)
    ax_xid.set_ylim(-0.2, 1.2)
    ax_Jd.set_ylim(-3, 5.5)
    ax_Sd.set_ylim(-0.7, 0.7)
    ax_xid.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_Jd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(2))
    ax_S.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.05))
    ax_Sd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_xi.xaxis.set_ticks_position('top')
    ax_xi.xaxis.set_label_position('top')
    ax_Sd.set_xlabel("$r/M$")
    ax_xi.set_xlabel("$r/M$")
    ax_xi.set_ylabel("$\\xi$")
    ax_J.set_ylabel("$J/M^2$")
    ax_S.set_ylabel("$S/M^2$")
    ax_xid.set_ylabel("$\\Delta\\xi/\\xi \;[10^{-11}]$")
    ax_Jd.set_ylabel("$\\Delta J/J \;[10^{-3}]$")
    ax_Sd.set_ylabel("$\\Delta S / S$")

    fig.savefig("compare_evolutions.pdf", bbox_inches='tight')  # Save pdf file
Exemplo n.º 4
0
def phase_resampling():
    '''
    Precessional phase resampling. The magnidute of the total spin S is sampled
    according to |dS/dt|^-1, which correspond to a flat distribution in t(S).
    Output is saved in ./phase_resampling.pdf and data stored in
    `precession.storedir'/phase_resampling_.dat


    **Run using**

        import precession.test
        precession.test.phase_resampling()
    '''

    fig = pylab.figure(figsize=(6, 6))  #Create figure object and axes
    ax_tS = fig.add_axes([0, 0, 0.6, 0.6])  #bottom-left
    ax_td = fig.add_axes([0.65, 0, 0.3, 0.6])  #bottom-right
    ax_Sd = fig.add_axes([0, 0.65, 0.6, 0.3])  #top-left

    q = 0.5  # Mass ratio. Must be q<=1.
    chi1 = 0.3  # Primary spin. Must be chi1<=1
    chi2 = 0.9  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    r = 200. * M  # Separation. Must be r>10M for PN to be valid
    J = 3.14  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.01  # Effective spin: xi_low<xi<xi_up as given by xi_allowed
    Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r)  # Limits in S
    tau = precession.precession_period(xi, J, q, S1, S2,
                                       r)  # Precessional period
    d = 2000  # Size of the statistical sample

    precession.make_temp()  # Create store directory, if necessary
    filename = precession.storedir + "/phase_resampling.dat"  # Output file name
    if not os.path.isfile(filename):  # Compute and store data if not present
        out = open(filename, "w")
        out.write("# q chi1 chi2 r J xi d\n")  # Write header
        out.write("# " +
                  ' '.join([str(x)
                            for x in (q, chi1, chi2, r, J, xi, d)]) + "\n")

        # S and t values for the S(t) plot
        S_vals = numpy.linspace(Sb_min, Sb_max, d)
        t_vals = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_vals
        ])
        # Sample values of S from |dt/dS|. Distribution should be flat in t.
        S_sample = numpy.array(
            [precession.samplingS(xi, J, q, S1, S2, r) for i in range(d)])
        t_sample = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_sample
        ])
        # Continuous distributions (normalized)
        S_distr = numpy.array([
            2. * abs(precession.dtdS(S, xi, J, q, S1, S2, r) / tau)
            for S in S_vals
        ])
        t_distr = numpy.array([2. / tau for t in t_vals])

        out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n")
        for Sv, tv, Ss, ts, Sd, td in zip(S_vals, t_vals, S_sample, t_sample,
                                          S_distr, t_distr):
            out.write(' '.join([str(x)
                                for x in (Sv, tv, Ss, ts, Sd, td)]) + "\n")
        out.close()
    else:  # Read
        S_vals, t_vals, S_sample, t_sample, S_distr, t_distr = numpy.loadtxt(
            filename, unpack=True)

    # Rescale all time values by 10^-6, for nicer plotting
    tau *= 1e-6
    t_vals *= 1e-6
    t_sample *= 1e-6
    t_distr /= 1e-6

    ax_tS.plot(S_vals, t_vals, c='blue', lw=2)  # S(t) curve
    ax_td.plot(t_distr, t_vals, lw=2., c='red')  # Continous distribution P(t)
    ax_Sd.plot(S_vals, S_distr, lw=2., c='red')  # Continous distribution P(S)
    ax_td.hist(t_sample,
               bins=60,
               range=(0, tau / 2.),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4,
               orientation="horizontal")  # Histogram P(t)
    ax_Sd.hist(S_sample,
               bins=60,
               range=(Sb_min, Sb_max),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4)  # Histogram P(S)

    # Options for nice plotting
    ax_tS.set_xlim(Sb_min, Sb_max)
    ax_tS.set_ylim(0, tau / 2.)
    ax_tS.set_xlabel("$S/M^2$")
    ax_tS.set_ylabel("$t/(10^6 M)$")
    ax_td.set_xlim(0, 0.5)
    ax_td.set_ylim(0, tau / 2.)
    ax_td.set_xlabel("$P(t)$")
    ax_td.set_yticklabels([])
    ax_Sd.set_xlim(Sb_min, Sb_max)
    ax_Sd.set_ylim(0, 20)
    ax_Sd.set_xticklabels([])
    ax_Sd.set_ylabel("$P(S)$")

    fig.savefig("phase_resampling.pdf", bbox_inches='tight')  # Save pdf file
Exemplo n.º 5
0
def spin_angles():
    '''
    Binary dynamics on the precessional timescale. The spin angles
    theta1,theta2, DeltaPhi and theta12 are computed and plotted against the
    time variable, which is obtained integrating dS/dt. The morphology is also
    detected as indicated in the legend of the plot. Output is saved in
    ./spin_angles.pdf.

    **Run using**

        import precession.test
        precession.test.spin_angles()
    '''

    fig = pylab.figure(figsize=(6, 6))  # Create figure object and axes
    ax_t1 = fig.add_axes([0, 1.95, 0.9, 0.5])  # first (top)
    ax_t2 = fig.add_axes([0, 1.3, 0.9, 0.5])  # second
    ax_dp = fig.add_axes([0, 0.65, 0.9, 0.5])  # third
    ax_t12 = fig.add_axes([0, 0, 0.9, 0.5])  # fourth (bottom)

    q = 0.7  # Mass ratio. Must be q<=1.
    chi1 = 0.6  # Primary spin. Must be chi1<=1
    chi2 = 1.  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    r = 20 * M  # Separation. Must be r>10M for PN to be valid
    J = 0.94  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi_vals = [-0.41, -0.3,
               -0.22]  # Effective spin: xi_low<xi<xi_up as given by xi_allowed

    for xi, color in zip(xi_vals,
                         ['blue', 'green', 'red']):  # Loop over three binaries

        tau = precession.precession_period(xi, J, q, S1, S2, r)  # Period
        morphology = precession.find_morphology(xi, J, q, S1, S2,
                                                r)  # Morphology
        if morphology == -1: labelm = "${\\rm L}0$"
        elif morphology == 1: labelm = "${\\rm L}\\pi$"
        elif morphology == 0: labelm = "${\\rm C}$"
        Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2,
                                              r)  # Limits in S
        S_vals = numpy.linspace(Sb_min, Sb_max,
                                1000)  # Create array, from S- to S+
        S_go = S_vals  # First half of the precession cycle: from S- to S+
        t_go = map(lambda x: precession.t_of_S(
            S_go[0], x, Sb_min, Sb_max, xi, J, q, S1, S2, r, 0, sign=-1.),
                   S_go)  # Compute time values. Assume t=0 at S-
        t1_go, t2_go, dp_go, t12_go = zip(*[
            precession.parametric_angles(S, J, xi, q, S1, S2, r) for S in S_go
        ])  # Compute the angles.
        dp_go = [-dp
                 for dp in dp_go]  # DeltaPhi<=0 in the first half of the cycle
        S_back = S_vals[::
                        -1]  # Second half of the precession cycle: from S+ to S-
        t_back = map(
            lambda x: precession.t_of_S(S_back[0],
                                        x,
                                        Sb_min,
                                        Sb_max,
                                        xi,
                                        J,
                                        q,
                                        S1,
                                        S2,
                                        r,
                                        t_go[-1],
                                        sign=1.), S_back
        )  # Compute time, start from the last point of the first half t_go[-1]
        t1_back, t2_back, dp_back, t12_back = zip(*[
            precession.parametric_angles(S, J, xi, q, S1, S2, r)
            for S in S_back
        ])  # Compute the angles. DeltaPhi>=0 in the second half of the cycle

        for ax, vec_go, vec_back in zip(
            [ax_t1, ax_t2, ax_dp, ax_t12], [t1_go, t2_go, dp_go, t12_go],
            [t1_back, t2_back, dp_back, t12_back]):  # Plot all curves
            ax.plot([t / tau for t in t_go],
                    vec_go,
                    c=color,
                    lw=2,
                    label=labelm)
            ax.plot([t / tau for t in t_back], vec_back, c=color, lw=2)

        # Options for nice plotting
        for ax in [ax_t1, ax_t2, ax_dp, ax_t12]:
            ax.set_xlim(0, 1)
            ax.set_xlabel("$t/\\tau$")
            ax.set_xticks(numpy.linspace(0, 1, 5))
        for ax in [ax_t1, ax_t2, ax_t12]:
            ax.set_ylim(0, numpy.pi)
            ax.set_yticks(numpy.linspace(0, numpy.pi, 5))
            ax.set_yticklabels(
                ["$0$", "$\\pi/4$", "$\\pi/2$", "$3\\pi/4$", "$\\pi$"])
        ax_dp.set_ylim(-numpy.pi, numpy.pi)
        ax_dp.set_yticks(numpy.linspace(-numpy.pi, numpy.pi, 5))
        ax_dp.set_yticklabels(
            ["$-\\pi$", "$-\\pi/2$", "$0$", "$\\pi/2$", "$\\pi$"])
        ax_t1.set_ylabel("$\\theta_1$")
        ax_t2.set_ylabel("$\\theta_2$")
        ax_t12.set_ylabel("$\\theta_{12}$")
        ax_dp.set_ylabel("$\\Delta\\Phi$")
        ax_t1.legend(
            loc='lower right',
            fontsize=18)  # Fill the legend with the precessional morphology

    fig.savefig("spin_angles.pdf", bbox_inches='tight')  # Save pdf file