コード例 #1
0
	def test_data_generator(self):
		FOV_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'
		LABEL_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'
		IMAGE_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'

		data_creator = Data(FOV_Path, LABEL_Path, IMAGE_Path,C, False)
		Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data'
		data_creator.create_data(Path)

		first_data_generator = itertools.cycle(D.data_generator(Path+r'\FOV', Path+r'\LABEL', Path+r'\IMAGE',0, 0))

		for z in range(D.start_z, D.end_z):
			for x in range(D.start_xy, D.end_xy):
				for y in range(D.start_xy, D.end_xy):


					Fov, Label, Image, i, j, k = next(first_data_generator)

					self.assertEqual(x, i)
					self.assertEqual(y, j)
					self.assertEqual(z, k)

					self.assertEqual( np.sum(Fov-tiff.imread(r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\FOV\FOV_%d%d%d_%d_%d.tif'%(x,y,z,0,0))),0)
					self.assertEqual( np.sum(Label- tiff.imread(r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\LABEL\LABEL_%d%d%d.tif'%(x,y,z))),0)
					self.assertEqual( np.sum(Image- tiff.imread(r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\IMAGE\IMAGE_%d%d%d.tif'%(x,y,z))),0)
コード例 #2
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestClassifier():
	data = Data("cs_170_small80.txt")
	start = time.time()
	d = data.selectFeature(data.data, [0,5,3,7])
	validator = LeaveOneOutValidator(d, KnearestNeighbor)
	print validator.validate()
	print "time: ", time.time() -start
コード例 #3
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestFeatureSelection():
	data = Data("cs_170_small80.txt")
	dat = data.preprocess()
	print dat.shape
	print "dat type: ", type(dat)
	col_nums = dat.shape[1]
	feature_indices = []
	for d in range(col_nums):
		feature_indices.append(d)
		print data.selectFeature(dat,feature_indices )
コード例 #4
0
ファイル: main.py プロジェクト: StephLee12/Course_DataMining
def main():

    path = 'DM_Experiment4/iris.arff'

    choice = input('Use KMeans Enter 1;Use DBSCAN Enter 2:')

    # load data
    data_obj = Data(path=path)
    data_obj.load_data()

    algorithm_router(choice, data_obj)
コード例 #5
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestDistance():
	data = Data("testData.txt")
	validator = LeaveOneOutValidator(data.data, KnearestNeighbor)
	d = data.preprocess()
	test, train = validator.leaveOneOut(d, 0)
	knn = KnearestNeighbor()
	print "test: ", test
	print "train: \n", train

	print "distance: ",  knn.distance(train, test)
	print "\n\n"
コード例 #6
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestBackwardsSearch():
	data = Data("cs_170_small80.txt")
	start = time.time()
	validator = LeaveOneOutValidator(data.data, KnearestNeighbor)
	backEl = BackwardsElimination(data, validator)	
	backEl.search()
	print "time: ", time.time() - start
コード例 #7
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestForwardSearch():
	data = Data("cs_170_small80.txt")
	start = time.time()
	validator = LeaveOneOutValidator(data.data, KnearestNeighbor)
	fwdSlct = ForwardSelection(data, validator)	
	fwdSlct.search()
	print "time: ", time.time() - start
コード例 #8
0
    def test_createdata_SAME(self):
        D = Data(imagepath, labelpath, promappath, C)
        Path = r'C:\Users\sunzh\CS636\Summer project\BPN\data'
        D.create_data(Path)

        r_xy = int((D.size[0] - 1) / 2)
        r_z = max(int((D.size[2] - 1) / 2), 1)

        for x in range(r_xy, r_xy + D.cropped_size[0]):
            for y in range(r_xy, r_xy + D.cropped_size[1]):
                for z in range(r_z, r_z + D.cropped_size[2]):
                    self.assertTrue(
                        os.path.isfile(Path + r'\FOV\FOV_%d%d%d_0_0.tif' %
                                       (x, y, z)))
                    self.assertTrue(
                        os.path.isfile(Path + r'\LABEL\LABEL_%d%d%d.tif' %
                                       (x, y, z)))
        print('2nd test case finished')
コード例 #9
0
def run_model():
    d = Data(LANG, DEVorTEST, GLOVE_FILE, ELMO_FILE, MODEL, DEP_ADJACENCY_GCN,
             POSITION_EMBED)
    d.load_data(
        DATAPATH
    )  # This loads train, dev, and test if available, and also word2vec and ELMo where relevant

    model = Tagger(d, d.max_length, d.input_dim, d.n_poses, d.n_classes,
                   initial_weight)
    tagger = getattr(model, MODEL)()  # choose the specified tagging model

    T = Train_Test(POS, MODEL, tagger, d)
    if DEVorTEST == "CROSS_VAL":
        T.cross_validation(EPOCHS, BATCH_SIZE, DATAPATH)
    else:
        T.train(EPOCHS, BATCH_SIZE)
        T.test(DATAPATH
               )  # We pass DATAPATH to this function to be used for evaluation
コード例 #10
0
def run_model():
    # args: lang, train, dev, test, word2vec_dir, elmo_dir, model_name
    d = Data(LANG_TR, LANG_DEV, LANG_TS, DEVorTEST, WV_DIR, ELMO_PATH, MODEL,
             DEP_ADJACENCY_GCN, DEP_INFO, POS)
    d.load_data(
        DATAPATH
    )  # This loads train, dev (if available), test (if available) and also word2vec and ELMo

    # args: max_length, n_poses, n_classes, initial_weight=''
    model = Tagger(d, initial_weight)
    tagger = getattr(model, MODEL)()  # choose the specified tagging model
    print(tagger)

    T = Train_Test(POS, W2V, MODEL, tagger, d, DEVorTEST)
    if DEVorTEST == "CROSS_VAL":
        T.cross_validation(EPOCHS, BATCH_SIZE, DATAPATH)
    else:
        T.train(EPOCHS, BATCH_SIZE)
        T.test(
            DATAPATH
        )  # We give the Data_path to this function, just for it to return the evaluation for us
コード例 #11
0
def main():
    
    # set path
    iris_path = 'DataAnalysisProjectDesign/Experiment2/iris_train.arff'
    adult_path = 'DataAnalysisProjectDesign/Experiment2/adult_train.arff'

    # get choice
    data_choice = input('Enter 1 for iris; Enter 2 for adult:')

    dt_num = int(input('Enter your expected tree number:'))

    path = select_dataset(data_choice,iris_path,adult_path)

    # create data instance
    data_obj = Data(path)
    data_obj.load_data()
    data_obj.fill_missing_data()

    # create random forest
    rf = RandomForest(
        data=data_obj,
        dt_num=dt_num
    )

    rf.bagging()
    rf.train_rf()
    correct_rate,conf_mat = rf.test_rf()

    return dt_num,correct_rate,conf_mat
コード例 #12
0
    def test_init(self):
        D = Data(imagepath, labelpath, promappath, C)
        self.assertEqual(D.padding, C.boundary_padding)
        self.assertEqual(D.size, C.field_of_view_scales)
        self.assertEqual(D.sample, C.sample_fov)
        self.assertEqual(D.stride_hw, C.stride_hw)
        self.assertEqual(D.stride_depth, C.stride_depth)
        self.assertEqual(D.cropped_size, C.cropped_size)

        self.assertAlmostEqual(
            int(
                np.sum(D.image - D.featurewise_std_normalization(
                    D.featurewise_center(Image[0:C.cropped_size[0],
                                               0:C.cropped_size[1],
                                               0:C.cropped_size[2]])))), 0)
        self.assertEqual(
            np.sum(D.label - D.label_making(Label[0:C.cropped_size[0],
                                                  0:C.cropped_size[1],
                                                  0:C.cropped_size[2]])), 0)
        self.assertEqual(
            np.sum(D.promap -
                   D.LLR(Promap[0:C.cropped_size[0], 0:C.cropped_size[1],
                                0:C.cropped_size[2]])), 0)

        print('1st test case finished')
コード例 #13
0
 def train_rf(self):
     for data_df in self.bagging_data:
         params_dict = self.get_train_params(data_df)
         data = Data(path=None,
                     dataset=None,
                     df=data_df,
                     fea_column=params_dict.get('fea_column'),
                     nom_columns=params_dict.get('nom_columns'),
                     num_columns=params_dict.get('num_columns'),
                     class_column=params_dict.get('class_column'),
                     class_data=params_dict.get('class_data'))
         tree = self.train_dt(train_data=data,
                              split_path=bytes(' ', encoding='utf-8'),
                              val=None,
                              num_flag=-1)
         self.dt_list.append(tree)
         self.root_list.append(tree)
コード例 #14
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestMenu():
	print "Welcome to Robert's Nearest Neigbhor Feature Search Algorithm"
	filename = raw_input("Enter filename to data: ")
	data = Data(filename)

	validator = LeaveOneOutValidator(data.data, KnearestNeighbor)
	print "Choose the Algorithm you'd like to run: (eg. 1)"
	print "1. Forward Selection"
	print "2. Backward Elimination"

	algorithm_choice = int(raw_input())

	if algorithm_choice == 1:
		algorithm = ForwardSelection(data, validator)
	elif algorithm_choice == 2:
		algorithm = BackwardsElimination(data, validator)

	print "This dataset has ", data.data.shape[1], " features and ", data.data.shape[0], " instances"
	algorithm.search()
コード例 #15
0
	def test_data_exchange_3d(self):
		C1 = Config()
		C1.field_of_view_scales = [3, 3, 3]
		C1.cropped_size = [5, 5, 3]
		D1 = data_generator.Data_Generator(C1)

		FOV_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\b.tif'
		LABEL_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\b.tif'
		IMAGE_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\b.tif'

		data_creator = Data(FOV_Path, LABEL_Path, IMAGE_Path,C1,False)
		Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data'
		data_creator.create_data(Path)

		print(data_creator.promap)

		D1.data_exchange(Path+r'\FOV', 1, 0 )
		first_data_generator = itertools.cycle(D1.data_generator(Path+r'\FOV', Path+r'\LABEL', Path+r'\IMAGE',1, 0))


		Fov, Label, Image, i, j, k = next(first_data_generator)
		print(Fov)
		self.assertEqual(np.sum(Fov), 8)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 24)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 36)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 48)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 40)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 72)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 7*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 8*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 9*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 120)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 11*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 12*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 13*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 14*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 15*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 16*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 17*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 18*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 19*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 20*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 21*8)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 22*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 23*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 24*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 25*8)

		#################### Ch2

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 1*12)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 2*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 3*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 4*18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 5*12)
		#
		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 6*18)
		#
		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 7*27)
		#
		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 8*27)
		#
		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 9*27)
		#
		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 10*6*3)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 11*6*3)
コード例 #16
0
def main():

    # set path
    iris_path = [
        'DataAnalysisProjectDesign/Experiment1/iris_train.arff',
        'DataAnalysisProjectDesign/Experiment1/iris_test.arff'
    ]
    adult_path = [
        'DataAnalysisProjectDesign/Experiment1/adult_train.arff',
        'DataAnalysisProjectDesign/Experiment1/adult_test.arff'
    ]

    # get choice
    data_choice = input('Enter 1 for iris DT; Enter 2 for adult DT:')
    tree_choice = input('Enter 1 for ID3; Enter 2 for CART:')

    path = select_dataset(data_choice, iris_path, adult_path)

    # create train data instance
    train_data_obj = Data(path[0])
    train_data_obj.load_data()
    train_data_obj.fill_missing_data()
    # create test data instance
    test_data_obj = Data(path[1])
    test_data_obj.clear_memory()
    test_data_obj.load_data()
    test_data_obj.fill_missing_data()

    tree = dt_router(train_data_obj, test_data_obj, tree_choice)

    tree.test()

    conf_mat, judge = tree.get_conf_mat()

    return tree, conf_mat, judge
コード例 #17
0
	def test_data_exchange(self):
		FOV_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'
		LABEL_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'
		IMAGE_Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data\a.tif'

		data_creator = Data(FOV_Path, LABEL_Path, IMAGE_Path,C, False)
		Path = r'C:\Users\sunzh\CS636\Summer project\BPN\utils\test\test_data'
		data_creator.create_data(Path)

		D.data_exchange(Path+r'\FOV', 1, 0 )
		first_data_generator = itertools.cycle(D.data_generator(Path+r'\FOV', Path+r'\LABEL', Path+r'\IMAGE',1, 0))


		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 4)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 12)


		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 18)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 24)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 20)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 36)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 63)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 72)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 81)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 60)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 66)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 108)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 117)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 126)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 90)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 96)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 153)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 162)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 171)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 120)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 84)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 22*6)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 23*6)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 24*6)

		Fov, Label, Image, i, j, k = next(first_data_generator)
		self.assertEqual(np.sum(Fov), 100)
コード例 #18
0
                t = str(t, encoding='utf-8')
                t = datetime.datetime.strptime(t, '%Y-%m-%d %H:%M:%S')
                for im in range(6):
                    tm = t + datetime.timedelta(minutes=20)
                    line = '{},{},"[{},{})",{:.2f}\n'.format(
                        it[0], it[1], str(t), str(tm), preds[it][i, im])
                    f.write(line)
                    t = tm


intervals = [24]
if __name__ == '__main__':
    test_intervals = [15, 20, 24]
    data_dir = '../../data/dataSets'
    data_set = 'test'  # sval
    data = Data(data_dir)
    if data_set != 'test':
        if data_set == 'sval':
            batch_size = 2 * 7
        elif data_set == 'val':
            batch_size = 60 * 7
        else:
            batch_size = 3920

        all_preds = []
        all_losses = []
        for interval in intervals:
            batch_link_ftr, batch_link_id, batch_link_g, \
            batch_route_ftr, batch_route_id, batch_route_g, \
            batch_wea_ftr, batch_time_ftr,\
            batch_times,batch_route_tgt, batch_weights = get_inputs(
コード例 #19
0
    def build_tree(self, train_data, split_path, val, num_flag):

        df = train_data.df  # get dataframe

        # create a node
        node = CARTNode(data=train_data,
                        split_fea=None,
                        val=val,
                        num_flag=num_flag,
                        split_path=split_path,
                        belong_fea=None,
                        leaf_flag=0,
                        purity_flag=0)

        uni_class_data = node.data.class_data.unique()
        # 若该类别数为1
        if uni_class_data.shape[0] == 1:
            node.leaf_flag = 1  # 标记为叶子结点
            node.purity_flag = 1  #标记为纯结点
            node.belong_fea = uni_class_data[0]
            return node

        if len(node.data.fea_column) == 0:  # 特征都用完了 多数表决
            node.leaf_flag = 1
            node.purity_flag = 0
            mode = node.data.class_data.mode().get(0)
            node.belong_fea = mode
            return node

        selected_fea, flag, divide_point, best_nom_fea_val = node.fea_selection(
        )
        node.split_fea = selected_fea

        if flag == 0:  # 数值属性
            split_df = [
                df[df[selected_fea] <= divide_point],
                df[df[selected_fea] > divide_point]
            ]
            # 是二叉树
            for i in range(2):
                if i == 0:  # 左子代
                    if split_df[i].empty:
                        mode = node.data.class_data.mode().get(0)
                        data_obj = Data(path=None,
                                        dataset=None,
                                        df=df,
                                        fea_column=node.data.fea_column,
                                        nom_columns=node.data.nom_columns,
                                        num_columns=node.data.num_columns,
                                        class_column=node.data.class_column,
                                        class_data=node.data.class_data)
                        node.left_child = CARTNode(
                            data=data_obj,
                            split_fea=None,
                            val=None,
                            num_flag=-1,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes(' not exist', encoding='utf-8'),
                            belong_fea=mode,
                            leaf_flag=1,
                            purity_flag=0)
                    else:  #不为空
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=split_df[i],
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=split_df[i][node.data.class_column])
                        node.left_child = self.build_tree(
                            train_data=data_obj,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes('<=', encoding='utf-8') +
                            bytes(str(divide_point), encoding='utf-8') +
                            bytes(' ', encoding='utf-8'),
                            val=bytes('<=', encoding='utf-8') +
                            bytes(str(divide_point), 'utf-8'),
                            num_flag=0)
                else:  #右子代
                    if split_df[i].empty:
                        mode = node.data.class_data.mode().get(0)
                        data_obj = Data(path=None,
                                        dataset=None,
                                        df=df,
                                        fea_column=node.data.fea_column,
                                        nom_columns=node.data.nom_columns,
                                        num_columns=node.data.num_columns,
                                        class_column=node.data.class_column,
                                        class_data=node.data.class_data)
                        node.right_child = CARTNode(
                            data=data_obj,
                            split_fea=None,
                            val=None,
                            num_flag=-1,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes(' not exist', encoding='utf-8'),
                            belong_fea=mode,
                            leaf_flag=1,
                            purity_flag=0)
                    else:
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=split_df[i],
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=split_df[i][node.data.class_column])
                        node.right_child = self.build_tree(
                            train_data=data_obj,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes('>', encoding='utf-8') +
                            bytes(str(divide_point), encoding='utf-8') +
                            bytes(' ', encoding='utf-8'),
                            val=bytes('>', encoding='utf-8') +
                            bytes(str(divide_point), encoding='utf-8'),
                            num_flag=1)
        else:  # 数据是标称型
            split_df = [
                df[df[selected_fea] == best_nom_fea_val],
                df[df[selected_fea] != best_nom_fea_val]
            ]

            for i in range(2):
                if i == 0:  #左子代
                    if split_df[i].empty:
                        mode = node.data.class_data.mode().get(0)
                        data_obj = Data(path=None,
                                        dataset=None,
                                        df=df,
                                        fea_column=node.data.fea_column,
                                        nom_columns=node.data.nom_columns,
                                        num_columns=node.data.num_columns,
                                        class_column=node.data.class_column,
                                        class_data=node.data.class_data)
                        node.left_child = CARTNode(
                            data=data_obj,
                            split_fea=None,
                            val=None,
                            num_flag=-1,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes(' not exist', encoding='utf-8'),
                            belong_fea=mode,
                            leaf_flag=1,
                            purity_flag=0)
                    else:
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=split_df[i],
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=split_df[i][node.data.class_column])
                        node.left_child = self.build_tree(
                            train_data=data_obj,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes(' not ', encoding='utf-8') +
                            best_nom_fea_val + bytes(' ', encoding='utf-8'),
                            val=bytes(' not ', encoding='utf-8') +
                            best_nom_fea_val,
                            num_flag=-1)
                else:  #右子代
                    if split_df[i].empty:
                        mode = node.data.class_data.mode().get(0)
                        data_obj = Data(path=None,
                                        dataset=None,
                                        df=df,
                                        fea_column=node.data.fea_column,
                                        nom_columns=node.data.nom_columns,
                                        num_columns=node.data.num_columns,
                                        class_column=node.data.class_column,
                                        class_data=node.data.class_data)
                        node.right_child = CARTNode(
                            data=data_obj,
                            split_fea=None,
                            val=None,
                            num_flag=-1,
                            split_path=split_path +
                            bytes(' not exist', encoding='utf-8'),
                            belong_fea=mode,
                            leaf_flag=1,
                            purity_flag=0)
                    else:
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=split_df[i],
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=split_df[i][node.data.class_column])
                        node.right_child = self.build_tree(
                            train_data=data_obj,
                            split_path=split_path +
                            bytes(selected_fea, encoding='utf-8') +
                            bytes('\'s ', encoding='utf-8') +
                            best_nom_fea_val + bytes(' ', encoding='utf-8'),
                            val=best_nom_fea_val,
                            num_flag=-1)
        return node
コード例 #20
0
ファイル: Test.py プロジェクト: tico2303/AI
def TestValidatorFlow():
	data = Data("cs_170_small80.txt")
	validator = LeaveOneOutValidator(data.data, KnearestNeighbor)
	precentage_correct = validator.validate()
コード例 #21
0
import numpy as np
from model import BILSTM
import pandas as pd
from preprocessing import Data


# taking the first 0.5 second of the signal data just as an example
# note each 1800 time is 0.5 second
# signal should have shape (1, 1800, 8)
signal = np.array([pd.read_csv("1_raw_data_13-12_22.03.16.txt", delimiter='\t').to_numpy()[1800:3600, 1:-1]])
print(signal.shape)
# Prepare Data
data = Data(signal)
# initialize model
model = BILSTM()
# load model
model.load_model()
# return prediction, the prediction for time 0.5-1 second is 1 (which is indeed true)
print(model.predict(data.X, data.zc_feature, data.ssc_feature, data.feature_1d))






コード例 #22
0
class PreprocessingTests(unittest.TestCase):
    def setUp(self):
        self.data = Data()

    def test_load(self):
        """
        Test existence, type, length of loaded data
        """
        self.data.load()

        self.assertIsNotNone(self.data._dataset, "loaded no data")
        self.assertEqual(type(("foo", "bar")), type(self.data._dataset),
                         "loaded no tuple")
        self.assertEqual(2, len(self.data._dataset),
                         "loaded tuple has false length")

    def test_preprocess(self):
        """
        Test one-hot-encoding and type conversions of preprocessed data
        """
        self.data.load()
        self.data.preprocess()

        # one-hot-encodings
        np.testing.assert_array_equal([0., 1.],
                                      np.unique(self.data._dataset[0][0]),
                                      "false one-hot-encoding of train_data")
        np.testing.assert_array_equal([0., 1.],
                                      np.unique(self.data._dataset[1][0]),
                                      "false one-hot-encoding of test_data")
        self.assertEqual("float64", self.data._dataset[0][0].dtype,
                         "wrong type of train_data values")
        self.assertEqual("float64", self.data._dataset[1][0].dtype,
                         "wrong type of test_data values")

        # label vectorization
        self.assertEqual(np.ndarray, type(self.data._dataset[0][1]),
                         "wrong type of train_labels set")
        self.assertEqual(np.ndarray, type(self.data._dataset[1][1]),
                         "wrong type of test_labels set")
        self.assertEqual("float32", self.data._dataset[0][1].dtype,
                         "wrong type of train_labels values")
        self.assertEqual("float32", self.data._dataset[1][1].dtype,
                         "wrong type of test_labels values")

    def test_split_data(self):
        """
        Test correct train-dev-test-split
        """
        self.data.load()
        self.data.preprocess()
        self.data.split_data()

        # correct number of tuples
        self.assertEqual(3, len(self.data._dataset), "wrong number of splits")
        self.assertEqual(2, len(self.data._dataset[0]),
                         "wrong number of train splits")
        self.assertEqual(2, len(self.data._dataset[1]),
                         "wrong number of dev splits")
        self.assertEqual(2, len(self.data._dataset[2]),
                         "wrong number of test splits")

        # existence
        self.assertIsNotNone(self.data._dataset[0][0], "train_data is None")
        self.assertIsNotNone(self.data._dataset[0][1], "train_labels is None")
        self.assertIsNotNone(self.data._dataset[1][0], "dev_data is None")
        self.assertIsNotNone(self.data._dataset[1][1], "dev_labels is None")
        self.assertIsNotNone(self.data._dataset[2][0], "test_data is None")
        self.assertIsNotNone(self.data._dataset[2][1], "test_labels is None")

    def test_train_dev_test(self):
        """
        Test type and shape of train, dev & test sets
        """
        (train_data,
         train_labels), (dev_data,
                         dev_labels), (test_data,
                                       test_labels) = self.data.train_dev_test

        # type
        self.assertEqual(np.ndarray, type(train_data),
                         "wrong type of train_data")
        self.assertEqual(np.ndarray, type(train_labels),
                         "wrong type of train_labels")
        self.assertEqual(np.ndarray, type(dev_data), "wrong type of dev_data")
        self.assertEqual(np.ndarray, type(dev_labels),
                         "wrong type of dev_labels")
        self.assertEqual(np.ndarray, type(test_data),
                         "wrong type of test_data")
        self.assertEqual(np.ndarray, type(test_labels),
                         "wrong type of test_labels")

        # shape
        self.assertEqual((15000, 10000), train_data.shape,
                         "train_data has wrong shape")
        self.assertEqual((15000, ), train_labels.shape,
                         "train_labels have wrong shape")
        self.assertEqual((10000, 10000), dev_data.shape,
                         "dev_data has wrong shape")
        self.assertEqual((10000, ), dev_labels.shape,
                         "dev_labels have wrong shape")
        self.assertEqual((25000, 10000), test_data.shape,
                         "test_data has wrong shape")
        self.assertEqual((25000, ), test_labels.shape,
                         "test_labels have wrong shape")
コード例 #23
0
 def setUp(self):
     self.data = Data()
コード例 #24
0
def main(_):
    global img_row, img_col
    max_steps = 15
    # intit tensorboard
    logdir_train = 'C:\\Users\\Yuval\\Documents\\tensorboard\\1' + '\\train'
    logdir_test = 'C:\\Users\\Yuval\\Documents\\tensorboard\\1' + '\\test'
    train_writer = tf.summary.FileWriter(logdir=logdir_train)
    test_writer = tf.summary.FileWriter(logdir=logdir_test)
    # TODO: add Embedded Visualizer is a cool 3D visualization of tensorboard data

    # Import data
    mydata = Data()

    # Create the model
    x = tf.placeholder(tf.float32, [None, img_row * img_col], name='x')

    # Define loss and optimizer
    y_ = tf.placeholder(tf.float32, [None, 2], name='labels')

    # Build the graph for the deep net
    y_conv, keep_prob = deepnn(x)

    # merges all summaries to be passed to fileWriter
    merged_summary = tf.summary.merge_all()

    # cost function to minimize
    with tf.name_scope('cross_entropy'):
        cross_entropy = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))

    # use AdamOptimizer instead of Gradient Descent Algo
    with tf.name_scope('accuracy'):
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    # Measure prediction accuracy by then frequency of correct classifications
    with tf.name_scope('accuracy'):
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # take time for performance analysis
    start_time = time.time()

    with tf.Session() as sess:
        # tensorboard add graph
        train_writer.add_graph(sess.graph)
        test_writer.add_graph(sess.graph)

        # initialize CNN weights
        sess.run(tf.global_variables_initializer())

        # batch-stochastic gradient descent
        for i in range(max_steps):

            batch_x, batch_y, dropout = mydata.get_batch(i, train=True)
            # run optimizer to calculate gradients
            summary, _ = sess.run([merged_summary, train_step],
                                  feed_dict={
                                      x: batch_x,
                                      y_: batch_y,
                                      keep_prob: dropout
                                  })
            train_writer.add_summary(summary, i)
            train_accuracy = accuracy.eval(feed_dict={
                x: batch_x,
                y_: batch_y,
                keep_prob: dropout
            })
            tf.summary.scalar('accuracy', train_accuracy)
            if i % 5 == 0:
                batch_x, batch_y, dropout = mydata.get_batch(i, train=False)
                summary, test_accuracy = sess.run([merged_summary, accuracy],
                                                  feed_dict={
                                                      x: batch_x,
                                                      y_: batch_y,
                                                      keep_prob: dropout
                                                  })
                test_writer.add_summary(summary, i)
                print('step %d, test accuracy %g' % (i, test_accuracy))
                print("--- %s seconds ---" % (time.time() - start_time))

            print('i=', i)
        print('test accuracy %g' % accuracy.eval(feed_dict={
            x: mydata.test_imgs,
            y_: mydata.test_labels,
            keep_prob: 1.0
        }))
コード例 #25
0
    def train_dt(self, train_data, split_path, val, num_flag):

        df = train_data.df  # get dataframe

        # create rfnode
        node = RFNode(data=train_data,
                      split_fea=None,
                      val=val,
                      num_flag=num_flag,
                      split_path=split_path,
                      belong_fea=None,
                      leaf_flag=0,
                      purity_flag=0)

        uni_class_data = node.data.class_data.unique()
        # 若该类别数为1
        if uni_class_data.shape[0] == 1:
            node.leaf_flag = 1  # 标记为叶子结点
            node.purity_flag = 1  #标记为纯结点
            node.belong_fea = uni_class_data[0]
            return node

        if len(node.data.fea_column) == 0:  # 特征都用完了 多数表决
            node.leaf_flag = 1
            node.purity_flag = 0
            mode = node.data.class_data.mode().get(0)
            node.belong_fea = mode
            return node

        selected_fea, flag, divide_point = node.fea_selection()
        node.split_fea = selected_fea

        if flag == 0:  #数值属性作为分裂属性
            #根据分裂属性 将数据分裂
            split_df = [
                df[df[selected_fea] <= divide_point],
                df[df[selected_fea] > divide_point]
            ]
            tmp_count = 0
            for data in split_df:
                #如果split_data中有一个为空 以train_data中多数表决 该结点为叶结点
                if data.empty:
                    mode = node.data.class_data.mode().get(0)
                    #创建新的data instance
                    data_obj = Data(path=None,
                                    dataset=None,
                                    df=df,
                                    fea_column=node.data.fea_column,
                                    nom_columns=node.data.nom_columns,
                                    num_columns=node.data.num_columns,
                                    class_column=node.data.class_column,
                                    class_data=node.data.class_data)
                    #作为该结点的子代
                    node.children.append(
                        RFNode(data=data_obj,
                               split_fea=None,
                               val=None,
                               num_flag=-1,
                               split_path=split_path +
                               bytes(selected_fea, encoding='utf-8') +
                               bytes(' not exist', encoding='utf-8'),
                               belong_fea=mode,
                               leaf_flag=1,
                               purity_flag=0))
                    tmp_count += 1
                else:
                    # tmp_count == 0 对于数值型为 <=
                    # tmp_count == 1 对于数值型为 >
                    if tmp_count == 0:
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=data,
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=data[node.data.class_column])
                        node.children.append(
                            self.train_dt(
                                train_data=data_obj,
                                split_path=split_path +
                                bytes(selected_fea, encoding='utf-8') +
                                bytes('<=', encoding='utf-8') +
                                bytes(str(divide_point), encoding='utf-8') +
                                bytes(' ', encoding='utf-8'),
                                val=bytes('<=', encoding='utf-8') +
                                bytes(str(divide_point), encoding='utf-8'),
                                num_flag=0))
                        tmp_count += 1
                    else:
                        data_obj = Data(
                            path=None,
                            dataset=None,
                            df=data,
                            fea_column=node.data.fea_column,
                            nom_columns=node.data.nom_columns,
                            num_columns=node.data.num_columns,
                            class_column=node.data.class_column,
                            class_data=data[node.data.class_column])
                        node.children.append(
                            self.train_dt(
                                train_data=data_obj,
                                split_path=split_path +
                                bytes(selected_fea, encoding='utf-8') +
                                bytes('>', encoding='utf-8') +
                                bytes(str(divide_point), encoding='utf-8') +
                                bytes(' ', encoding='utf-8'),
                                val=bytes('>', encoding='utf-8') +
                                bytes(str(divide_point), encoding='utf-8'),
                                num_flag=1))
        else:  # flag == 1 标称型数据
            # 获取分裂属性列的所有不重复元素
            selected_fea_value = df[selected_fea].unique()
            for val in selected_fea_value:
                split_df = df[df[selected_fea] == val]
                if split_df.empty:
                    mode = node.data.class_data.mode().get(0)
                    data_obj = Data(path=None,
                                    dataset=None,
                                    df=df,
                                    fea_column=node.data.fea_column,
                                    nom_columns=node.data.nom_columns,
                                    num_columns=node.data.num_columns,
                                    class_column=node.data.class_column,
                                    class_data=node.data.class_data)
                    node.children.append(
                        RFNode(data=data_obj,
                               split_fea=None,
                               val=None,
                               num_flag=-1,
                               split_path=split_path +
                               bytes(selected_fea, encoding='utf-8') +
                               bytes(' not exist', encoding='utf-8'),
                               belong_fea=mode,
                               leaf_flag=1,
                               purity_flag=0))
                else:
                    data_obj = Data(
                        path=None,
                        dataset=None,
                        df=split_df,
                        fea_column=node.data.fea_column,
                        nom_columns=node.data.nom_columns,
                        num_columns=node.data.num_columns,
                        class_column=node.data.class_column,
                        class_data=split_df[node.data.class_column])
                    node.children.append(
                        self.train_dt(train_data=data_obj,
                                      split_path=split_path +
                                      bytes(selected_fea, encoding='utf-8') +
                                      bytes(' ', encoding='utf-8'),
                                      val=val,
                                      num_flag=-1))

        return node