コード例 #1
0
def test_fit():
    """Test the routine to fit the parameters of the dce normalization."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)

    # Create a synthetic model to fit on
    stn.model_ = np.array([30., 30., 32., 31., 31., 30., 35., 55., 70., 80.])
    stn.is_model_fitted_ = True

    # Fit the parameters on the model
    stn.fit(dce_mod, gt_mod, label_gt[0])

    assert_almost_equal(stn.fit_params_['scale-int'], 1.2296657327848537,
                        decimal=PRECISION_DECIMAL)
    assert_equal(stn.fit_params_['shift-time'], 0.0)
    data = np.array([191.29, 193.28, 195.28, 195.28, 195.28, 197.28, 213.25,
                     249.18, 283.12, 298.10])
    assert_array_almost_equal(stn.fit_params_['shift-int'], data,
                              decimal=PRECISION_DECIMAL)
コード例 #2
0
def test_save_model_wrong_ext():
    """Test either if an error is raised if the filename as a wrong
    extension while storing the model."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])

    # Try to store the file not with an npy file
    assert_raises(ValueError, stn.save_model, os.path.join(currdir, 'data',
                                                           'model.rnd'))
コード例 #3
0
def test_shift_serie():
    """Test the routine for shifting."""

    # Create a synthetic signal
    signal = np.arange(5)

    # Create a shift of 0
    shift = 0
    signal_shift = StandardTimeNormalization._shift_serie(signal, shift)

    # Check the signal
    assert_array_equal(signal_shift, signal)

    # Create a shift of 2
    shift = 2
    signal_shift = StandardTimeNormalization._shift_serie(signal, shift)

    # Check the signal
    gt_signal = np.array([0, 0, 0, 1, 2])
    assert_array_equal(signal_shift, gt_signal)

    # Create a shift of -2
    shift = -2
    signal_shift = StandardTimeNormalization._shift_serie(signal, shift)

    # Check the signal
    gt_signal = np.array([2, 3, 4, 4, 4])
    assert_array_equal(signal_shift, gt_signal)
コード例 #4
0
def test_partial_fit_model_2():
    """Test the routine to fit two models."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])
    stn.partial_fit_model(dce_mod, gt_mod, label_gt[0])

    # Check the model computed
    model_gt = np.array([22.26479174, 22.51070962, 24.66027277, 23.43488237,
                         23.75601817, 22.56173871, 26.86244505, 45.06227804,
                         62.34273874, 71.35327656])
    assert_array_almost_equal(stn.model_, model_gt, decimal=PRECISION_DECIMAL)
    assert_true(stn.is_model_fitted_)
コード例 #5
0
def test_build_graph():
    """Test the method to build a graph from the heatmap."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [100] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Build the graph by taking the inverse exponential of the heatmap
    graph = StandardTimeNormalization._build_graph(heatmap, .5)
    graph_dense = graph.toarray()

    data = np.load(os.path.join(currdir, 'data', 'graph.npy'))
    assert_array_equal(graph_dense, data)
コード例 #6
0
def test_shift_heatmap():
    """Test the routine which shift the heatmap."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [100] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Create a list of shift which do not have the same number of entries
    # than the heatmap - There is 4 series, let's create only 2
    shift_arr = np.array([10] * 4)

    heatmap_shifted = StandardTimeNormalization._shift_heatmap(heatmap,
                                                               shift_arr)

    data = np.load(os.path.join(currdir, 'data', 'heatmap_shifted.npy'))
    assert_array_equal(heatmap_shifted, data)
コード例 #7
0
def find_normalization_params(pat_dce, pat_gt, label, pat_model):
    # Create the normalization object and load the model
    dce_norm = StandardTimeNormalization(DCEModality())
    dce_norm.load_model(pat_model)

    # Read the DCE
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(pat_dce)

    # Read the GT
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label, pat_gt)

    # Find the normalization parameters
    dce_norm.fit(dce_mod, ground_truth=gt_mod, cat=label[0])

    return dce_norm
コード例 #8
0
def test_partial_fit_without_gt():
    """Test the partial routine without any gt provided."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)
    stn.partial_fit_model(dce_mod)

    # Check the data of the model
    data = np.array([89.90, 90.78, 89.38, 90.45, 91.62, 90.51,
                     93.79, 98.52, 101.79, 103.56])
    assert_array_almost_equal(stn.model_, data, decimal=PRECISION_DECIMAL)
    assert_true(stn.is_model_fitted_)
コード例 #9
0
def test_walk_through_graph_shortest_path():
    """Test the routine to go through the graph using shortest path."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'gt_folders', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Build a heatmap from the dce data
    # Reduce the number of bins to enforce low memory consumption
    nb_bins = [10] * dce_mod.n_serie_
    heatmap, bins_heatmap = dce_mod.build_heatmap(gt_mod.extract_gt_data(
        label_gt[0]), nb_bins=nb_bins)

    # Build the graph by taking the inverse exponential of the heatmap
    heatmap_inv_exp = np.exp(img_as_float(1. - (heatmap / np.max(heatmap))))
    graph = StandardTimeNormalization._build_graph(heatmap_inv_exp, .99)

    start_end_tuple = ((0, 6), (3, 6))

    # Call the algorithm to walk through the graph
    path = StandardTimeNormalization._walk_through_graph(graph,
                                                         heatmap_inv_exp,
                                                         start_end_tuple,
                                                         'shortest-path')

    gt_path = np.array([[0, 6], [1, 6], [2, 6], [3, 6]])
    assert_array_equal(path, gt_path)
コード例 #10
0
def test_normalize_denormalize_3():
    """Test the data normalization and denormalization with shift > 0."""

    # Load the data with only a single serie
    currdir = os.path.dirname(os.path.abspath(__file__))
    path_data = os.path.join(currdir, 'data', 'full_dce')
    # Create an object to handle the data
    dce_mod = DCEModality()

    # Read the data
    dce_mod.read_data_from_path(path_data)

    # Load the GT data
    path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')]
    label_gt = ['prostate']
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, path_gt)

    # Create the object to make the normalization
    stn = StandardTimeNormalization(dce_mod)

    # Simulate that we fitted the data
    stn.model_ = np.array([30., 30., 32., 31., 31., 30., 35., 55., 70., 80.])
    stn.is_model_fitted_ = True
    stn.fit_params_ = {'scale-int': 1.2296657327848537,
                       'shift-time': 3.0,
                       'shift-int': np.array([191.29, 193.28, 195.28, 195.28,
                                              195.28, 197.28, 213.25, 249.18,
                                              283.12, 298.10])}
    stn.is_fitted_ = True

    # Store the data somewhere
    data_gt_cp = dce_mod.data_.copy()

    # Normalize the data
    dce_mod_norm = stn.normalize(dce_mod)

    # Check if the data are properly normalized
    dce_mod_norm.data_.flags.writeable = False
    data = np.load(os.path.join(currdir, 'data', 'data_normalized_dce_3.npy'))
    assert_equal(hash(dce_mod_norm.data_.data), data)

    dce_mod_norm.data_.flags.writeable = True

    dce_mod_2 = stn.denormalize(dce_mod_norm)
    dce_mod_2.data_.flags.writeable = False
    assert_equal(hash(dce_mod_2.data_.data), -3781160829709175881)
コード例 #11
0
def find_normalization_params(pat_dce, pat_gt, label, pat_model):
    # Create the normalization object and load the model
    dce_norm = StandardTimeNormalization(DCEModality())
    dce_norm.load_model(pat_model)

    # Read the DCE
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(pat_dce)

    # Read the GT
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label, pat_gt)

    # Find the normalization parameters
    dce_norm.fit(dce_mod, ground_truth=gt_mod, cat=label[0])

    return dce_norm
コード例 #12
0
    brix_ext = BrixQuantificationExtraction(DCEModality())

    # Read the DCE
    print 'Read DCE images'
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(p_dce)

    # Read the GT
    print 'Read GT images'
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, p_gt)

    # Load the approproate normalization object
    filename_norm = (pat.lower().replace(' ', '_') +
                     '_norm.p')
    dce_norm = StandardTimeNormalization.load_from_pickles(
        os.path.join(path_norm, filename_norm))

    dce_mod = dce_norm.normalize(dce_mod)

    for idx in range(dce_mod.data_.shape[0]):
        dce_mod.data_[idx, :] += shift[idx]

    dce_mod.update_histogram()

    # Fit the parameters for Brix
    print 'Extract Brix'
    brix_ext.fit(dce_mod, ground_truth=gt_mod, cat=label_gt[0])

    # Extract the matrix
    print 'Extract the feature matrix'
    data = brix_ext.transform(dce_mod, ground_truth=gt_mod, cat=label_gt[0])
コード例 #13
0
    # Load the testing data that correspond to the index of the LOPO
    # Create the object for the DCE
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(path_patients_list_dce[idx_pat])
    print 'Read the DCE data for the current patient ...'

    # Create the corresponding ground-truth
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt,
                               path_patients_list_gt[idx_pat])
    print 'Read the GT data for the current patient ...'

    # Load the approproate normalization object
    filename_norm = (id_patient_list[idx_pat].lower().replace(' ', '_') +
                     '_norm.p')
    dce_norm = StandardTimeNormalization.load_from_pickles(
        os.path.join(path_norm, filename_norm))

    dce_mod = dce_norm.normalize(dce_mod)

    # Create the object to extrac data
    dce_ese = EnhancementSignalExtraction(DCEModality())

    # Concatenate the training data
    data = dce_ese.transform(dce_mod, gt_mod, label_gt[0])
    # Check that the path is existing
    if not os.path.exists(path_store):
        os.makedirs(path_store)
    pat_chg = (id_patient_list[idx_pat].lower().replace(' ', '_') +
               '_ese_' + '_dce.npy')
    filename = os.path.join(path_store, pat_chg)
    np.save(filename, data)
コード例 #14
0
# Generate the different path to be later treated
path_patients_list_dce = []
path_patients_list_gt = []
# Create the generator
id_patient_list = (name for name in os.listdir(path_patients)
                   if os.path.isdir(os.path.join(path_patients, name)))
for id_patient in id_patient_list:
    # Append for the DCE data
    path_patients_list_dce.append(os.path.join(path_patients, id_patient,
                                               path_dce))
    # Append for the GT data - Note that we need a list of gt path
    path_patients_list_gt.append([os.path.join(path_patients, id_patient,
                                               path_gt)])

# Create the model iteratively
dce_norm = StandardTimeNormalization(DCEModality())
for pat_dce, pat_gt in zip(path_patients_list_dce, path_patients_list_gt):
    # Read the DCE
    dce_mod = DCEModality()
    dce_mod.read_data_from_path(pat_dce)

    # Read the GT
    gt_mod = GTModality()
    gt_mod.read_data_from_path(label_gt, pat_gt)

    # Fit the model
    dce_norm.partial_fit_model(dce_mod, ground_truth=gt_mod,
                               cat=label_gt[0])

# Define the path where to store the model
path_store_model = '/data/prostate/pre-processing/lemaitre-2016-nov/model'
コード例 #15
0
ファイル: dce_normalization.py プロジェクト: I2Cvb/prostate
# Define the list of path for the GT
path_gt = ['/data/prostate/experiments/Patient 383/GT_inv/prostate']
# Define the associated list of label for the GT
label_gt = ['prostate']

# Read the DCE
dce_mod = DCEModality()
dce_mod.read_data_from_path(path_dce)

# Read the GT
gt_mod = GTModality()
gt_mod.read_data_from_path(label_gt, path_gt)

# Create the object to normalize the DCE data
dce_norm = StandardTimeNormalization(dce_mod)
# Fit the data to get the normalization parameters
dce_norm.partial_fit_model(dce_mod, ground_truth=gt_mod,
                           cat='prostate')

print dce_norm.model_

# Define the path for the DCE
path_dce = '/data/prostate/experiments/Patient 387/DCE'

# Define the list of path for the GT
path_gt = ['/data/prostate/experiments/Patient 387/GT_inv/prostate']
# Define the associated list of label for the GT
label_gt = ['prostate']

# Read the DCE
コード例 #16
0
ファイル: shift_for_model.py プロジェクト: I2Cvb/prostate
import os

import numpy as np

from protoclass.preprocessing import StandardTimeNormalization

path_root = '/data/prostate/pre-processing/lemaitre-2016-nov/norm-objects'

shift_patient = []

# We have to open each npy file
for root, dirs, files in os.walk(path_root):

    # Create the string for the file to read
    for f in files:
        filename = os.path.join(root, f)

        # Load the normalization object
        dce_norm = StandardTimeNormalization.load_from_pickles(filename)

        shift_patient.append(dce_norm.fit_params_['shift-int'])

# Stack the different array vetically
shift_patient = np.vstack(shift_patient)
shift_patient = np.max(shift_patient, axis=0)
コード例 #17
0
ファイル: shift_for_model.py プロジェクト: I2Cvb/prostate
import os

import numpy as np

from protoclass.preprocessing import StandardTimeNormalization

path_root = '/data/prostate/pre-processing/lemaitre-2016-nov/norm-objects'


shift_patient = []

# We have to open each npy file
for root, dirs, files in os.walk(path_root):

    # Create the string for the file to read
    for f in files:
        filename = os.path.join(root, f)

        # Load the normalization object
        dce_norm = StandardTimeNormalization.load_from_pickles(filename)

        shift_patient.append(dce_norm.fit_params_['shift-int'])

# Stack the different array vetically
shift_patient = np.vstack(shift_patient)
shift_patient = np.max(shift_patient, axis=0)