def test_fit(): """Test the routine to fit the parameters of the dce normalization.""" # Load the data with only a single serie currdir = os.path.dirname(os.path.abspath(__file__)) path_data = os.path.join(currdir, 'data', 'full_dce') # Create an object to handle the data dce_mod = DCEModality() # Read the data dce_mod.read_data_from_path(path_data) # Load the GT data path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')] label_gt = ['prostate'] gt_mod = GTModality() gt_mod.read_data_from_path(label_gt, path_gt) # Create the object to make the normalization stn = StandardTimeNormalization(dce_mod) # Create a synthetic model to fit on stn.model_ = np.array([30., 30., 32., 31., 31., 30., 35., 55., 70., 80.]) stn.is_model_fitted_ = True # Fit the parameters on the model stn.fit(dce_mod, gt_mod, label_gt[0]) assert_almost_equal(stn.fit_params_['scale-int'], 1.2296657327848537, decimal=PRECISION_DECIMAL) assert_equal(stn.fit_params_['shift-time'], 0.0) data = np.array([191.29, 193.28, 195.28, 195.28, 195.28, 197.28, 213.25, 249.18, 283.12, 298.10]) assert_array_almost_equal(stn.fit_params_['shift-int'], data, decimal=PRECISION_DECIMAL)
def test_normalize_denormalize_3(): """Test the data normalization and denormalization with shift > 0.""" # Load the data with only a single serie currdir = os.path.dirname(os.path.abspath(__file__)) path_data = os.path.join(currdir, 'data', 'full_dce') # Create an object to handle the data dce_mod = DCEModality() # Read the data dce_mod.read_data_from_path(path_data) # Load the GT data path_gt = [os.path.join(currdir, 'data', 'full_gt', 'prostate')] label_gt = ['prostate'] gt_mod = GTModality() gt_mod.read_data_from_path(label_gt, path_gt) # Create the object to make the normalization stn = StandardTimeNormalization(dce_mod) # Simulate that we fitted the data stn.model_ = np.array([30., 30., 32., 31., 31., 30., 35., 55., 70., 80.]) stn.is_model_fitted_ = True stn.fit_params_ = {'scale-int': 1.2296657327848537, 'shift-time': 3.0, 'shift-int': np.array([191.29, 193.28, 195.28, 195.28, 195.28, 197.28, 213.25, 249.18, 283.12, 298.10])} stn.is_fitted_ = True # Store the data somewhere data_gt_cp = dce_mod.data_.copy() # Normalize the data dce_mod_norm = stn.normalize(dce_mod) # Check if the data are properly normalized dce_mod_norm.data_.flags.writeable = False data = np.load(os.path.join(currdir, 'data', 'data_normalized_dce_3.npy')) assert_equal(hash(dce_mod_norm.data_.data), data) dce_mod_norm.data_.flags.writeable = True dce_mod_2 = stn.denormalize(dce_mod_norm) dce_mod_2.data_.flags.writeable = False assert_equal(hash(dce_mod_2.data_.data), -3781160829709175881)