def fit(self, X, y): sss = StratifiedShuffleSplit(n_splits=self.hsic_splits, random_state=42) idxs = [] hsics = [] for train_index, test_index in list(sss.split(X, y)): hsic_lasso2 = HSICLasso() hsic_lasso2.input(X[train_index], y[train_index]) hsic_lasso2.classification( self.n_features, B=self.B, M=self.M) #(self.n_features, B=self.B, M=self.M) hsics.append(hsic_lasso2) # not just best features - get their neighbors (similar features) too all_ft_idx = np.array(hsic_lasso2.get_index(), dtype=int).ravel() for i in range(len(all_ft_idx)): idx = np.array(hsic_lasso2.get_index_neighbors( feat_index=i, num_neighbors=10), dtype=int) score = np.array(hsic_lasso2.get_index_neighbors_score( feat_index=i, num_neighbors=10), dtype=int) idx = idx[np.where(score > self.neighbor_threshold)[0]] all_ft_idx = np.concatenate((all_ft_idx, idx)) all_ft_idx = np.unique(all_ft_idx) idxs.append(all_ft_idx) if len(idxs) == 1: self.hsic_idx_ = idxs[0] else: self.hsic_idx_ = np.intersect1d(idxs[-1], self.hsic_idx_) print("HSIC done.", len(self.hsic_idx_)) print("Upsampling with ADASYN... (features: " + str(len(self.hsic_idx_)) + ")") sm = ADASYN(sampling_strategy="minority", n_neighbors=self.adasyn_neighbors, n_jobs=-1) sX, sy = X[:, self.hsic_idx_], y if self.adasyn_neighbors > 0: try: sX, sy = sm.fit_resample(X[:, self.hsic_idx_], y) for i in range(len(np.unique(y) - 1)): sX, sy = sm.fit_resample(sX, sy) except: pass print("ADASYN done. Starting clf") self.clf_ = LGBMClassifier(n_estimators=1000).fit(sX, sy) print("done") return self
def fit(self, X, y): if X.shape[1] > 10000: #clf = RandomForestClassifier(n_estimators=1000,n_jobs=-1).fit(X,y) clf = LGBMClassifier(n_estimators=1000, n_jobs=-1).fit(X, y) ftimp = clf.feature_importances_ relevant = np.where(ftimp > 0)[0] print("relevant ft:", len(relevant), "/", X.shape[1]) else: relevant = np.arange(X.shape[1]) sss = StratifiedShuffleSplit(n_splits=self.hsic_splits, random_state=42) idxs = [] hsics = [] for train_index, test_index in list(sss.split(X, y)): hsic_lasso2 = HSICLasso() hsic_lasso2.input(X[:, relevant][train_index], y[train_index]) hsic_lasso2.classification( self.n_features, B=self.B, M=self.M) #(self.n_features, B=self.B, M=self.M) hsics.append(hsic_lasso2) # not just best features - get their neighbors (similar features) too all_ft_idx = np.array(hsic_lasso2.get_index(), dtype=int).ravel() for i in range(len(all_ft_idx)): idx = np.array(hsic_lasso2.get_index_neighbors( feat_index=i, num_neighbors=10), dtype=int) score = np.array(hsic_lasso2.get_index_neighbors_score( feat_index=i, num_neighbors=10), dtype=int) idx = idx[np.where(score > self.neighbor_threshold)[0]] all_ft_idx = np.concatenate((all_ft_idx, idx)) all_ft_idx = np.unique(all_ft_idx) idxs.append(relevant[all_ft_idx]) #if len(idxs) == 1: # self.hsic_idx_ = idxs[0] #else: # self.hsic_idx_ = np.intersect1d(idxs[-1], self.hsic_idx_) self.hsic_idx_ = [] stability_concession = 0 while len(self.hsic_idx_) == 0: featurecandidates = np.unique(np.concatenate(idxs)) for candidate in featurecandidates: occurrences = np.sum( [1 if candidate in idx else 0 for idx in idxs]) if occurrences > self.stability_minimum_across_splits - stability_concession: self.hsic_idx_.append(candidate) if len(self.hsic_idx_) > 1: break else: # failed to find commonly occurring features - reduce threshold stability_concession += 1 print("HSIC done.", len(self.hsic_idx_), "(out of ", len(featurecandidates), " candidates)") print("Upsampling with ADASYN... (features: " + str(len(self.hsic_idx_)) + ")") sm = ADASYN(sampling_strategy="minority", n_neighbors=self.adasyn_neighbors, n_jobs=-1) sX, sy = X[:, self.hsic_idx_], y if self.adasyn_neighbors > 0: try: sX, sy = sm.fit_resample(X[:, self.hsic_idx_], y) for i in range(len(np.unique(y) - 1)): sX, sy = sm.fit_resample(sX, sy) except: pass print("ADASYN done. Starting clf") self.clf_ = LGBMClassifier(n_estimators=1000).fit(sX, sy) print("done") return self