def main(): hsic_lasso = HSICLasso() hsic_lasso.input("../tests/test_data/matlab_data.mat") #max_neighbors=0 means that we only use the HSIC Lasso features to plot heatmap hsic_lasso.regression(5, max_neighbors=0) #Compute linkage hsic_lasso.linkage() #Run Hierarchical clustering # Features are clustered by using HSIC scores # Samples are clusterd by using Euclid distance hsic_lasso.plot_heatmap()
- MODE: regression or classification. - HL_SELECT: number of features to select. - HL_B: size of the block. - HL_M: number of permutations. Output files: - features_hl.npy: numpy array with the 0-based index of the selected features. ''' import numpy as np from pyHSICLasso import HSICLasso hl = HSICLasso() np.random.seed(0) hl.X_in = np.load("${X_TRAIN}").T hl.Y_in = np.load("${Y_TRAIN}").T hl.Y_in = np.expand_dims(hl.Y_in, 0) hl.featname = np.load("${FEATNAMES}") try: hl.${MODE}($HL_SELECT, B = $HL_B, M = $HL_M, max_neighbors = 50) except MemoryError: import sys, traceback traceback.print_exc() np.save('features_hl.npy', np.array([])) sys.exit(77) hl.linkage() hl.plot_dendrogram() hl.plot_heatmap()