コード例 #1
0
ファイル: test_fmmlib.py プロジェクト: inducer/pyfmmlib
def test_fmm():
    for dims in [2, 3]:
        for kernel in [0, 5]:
            sources = np.random.randn(4000, dims)
            dipvec = np.random.randn(4000, dims)
            fmm_part("pg", iprec=1, kernel=kernel, sources=sources,
                    dip_charge=1, dipvec=dipvec,
                    debug=True)

            targ_def = (slice(-3, 3, 20j),)
            targets = np.mgrid[targ_def*dims]
            targets = targets.reshape(dims, -1)

            fmm_part("PG", iprec=1, kernel=kernel,
                    sources=sources, mop_charge=1, target=targets.T,
                    debug=True)
コード例 #2
0
def main():
    sources = np.random.randn(40, 2)

    targets = np.mgrid[-7:7:400j, -7:7:400j]
    pot_shape = targets.shape[1:]
    targets = targets.reshape(2, -1)

    pot, grad = fmm_part("PG",
                         iprec=2,
                         kernel=HelmholtzKernel(5),
                         sources=sources,
                         mop_charge=1,
                         target=targets.T)

    pot = pot.reshape(pot_shape)

    try:
        import matplotlib.pyplot as pt
    except ImportError:
        print("matplotlib not installed, not plotting")
    else:
        pt.imshow(pot.real)
        outfile = "helmholtz-potential.png"
        pt.savefig(outfile)
        print("wrote '%s'" % outfile)
コード例 #3
0
    def cauchy_fmm(density):
        # This splits the Cauchy kernel into the sum of two directional source
        # derivatives of the Laplace kernel. See Section 7.5 of Kress, Linear
        # Integral Equations.
        dn_part = pyfmmlib.fmm_part("P",
                                    iprec=5,
                                    kernel=pyfmmlib.LaplaceKernel(),
                                    sources=sources,
                                    target=targets,
                                    dip_charge=weight * density,
                                    dipvec=normals)

        dt_part = pyfmmlib.fmm_part("P",
                                    iprec=5,
                                    kernel=pyfmmlib.LaplaceKernel(),
                                    sources=sources,
                                    target=targets,
                                    dip_charge=weight * density,
                                    dipvec=tangents)

        return dn_part - 1j * dt_part
コード例 #4
0
def test_fmm():
    for dims in [2, 3]:
        for kernel in [0, 5]:
            sources = np.random.randn(4000, dims)
            dipvec = np.random.randn(4000, dims)
            fmm_part("pg",
                     iprec=1,
                     kernel=kernel,
                     sources=sources,
                     dip_charge=1,
                     dipvec=dipvec,
                     debug=True)

            targ_def = (slice(-3, 3, 20j), )
            targets = np.mgrid[targ_def * dims]
            targets = targets.reshape(dims, -1)

            fmm_part("PG",
                     iprec=1,
                     kernel=kernel,
                     sources=sources,
                     mop_charge=1,
                     target=targets.T,
                     debug=True)
コード例 #5
0
from __future__ import division

from pyfmmlib import fmm_part, HelmholtzKernel
import numpy as np
import matplotlib.pyplot as pt

sources = np.random.randn(40, 2)

targets = np.mgrid[-7:7:400j, -7:7:400j]
pot_shape = targets.shape[1:]
targets = targets.reshape(2, -1)

pot, grad = fmm_part("PG", iprec=2, kernel=HelmholtzKernel(5),
        sources=sources, mop_charge=1, target=targets.T)

pot = pot.reshape(pot_shape)

pt.imshow(pot.real)
pt.show()
コード例 #6
0
def solve_phi(Swimmers, P, i, outerCorr=0):
    """Solves the boundary integral equation using a Kutta condition and the
    Fast Multipole Method.

    Args:
        Swimmers: List of Swimmer objects being simulated.
        RHO: Fluid density.
        DEL_T: Time step length.
        i: Time step number.
    """
    for Swim in Swimmers:
        if (outerCorr <= 1):
            # mu_past used in differencing for pressure
            Swim.Body.mu_past[1:4, :] = Swim.Body.mu_past[0:3, :]
            Swim.Body.mu_past[0, :] = Swim.Body.mu

    (sigma_all, mu_w_all, a_b, a_e, b_e) = influence_matrices(Swimmers, i)

    for SwimI in Swimmers:
        a_e[:, SwimI.i_b] = -b_e[:, SwimI.i_e]
        a_e[:, SwimI.i_b + SwimI.Body.N - 1] = b_e[:, SwimI.i_e]
    a = a_b + a_e

    # Prepare FMM inputs
    b_places = np.vstack(
        (Swimmers[0].Body.AF.x_mid[0, :], Swimmers[0].Body.AF.z_mid[0, :]))
    target = np.vstack((Swimmers[0].Body.AF.x_col, Swimmers[0].Body.AF.z_col))
    lpanel = panel_vectors(Swimmers[0].Body.AF.x, Swimmers[0].Body.AF.z)[-1]
    if (i > 0):
        w_places = np.vstack(
            (0.5 * (Swimmers[0].Wake.x[1:i + 1] + Swimmers[0].Wake.x[:i]),
             0.5 * (Swimmers[0].Wake.z[1:i + 1] + Swimmers[0].Wake.z[:i])))
        (nx, nz, lwpanel) = panel_vectors(Swimmers[0].Wake.x[:i + 1],
                                          Swimmers[0].Wake.z[:i + 1])[2:]
        n_w = np.vstack((nx, nz))

    # Get right-hand side
    b_body = np.real(
        fmm_part("P",
                 iprec=5,
                 kernel=0,
                 sources=b_places.T,
                 target=target.T,
                 mop_charge=sigma_all * lpanel)) / 2. / np.pi
    if i == 0:
        b = -b_body
    else:
        b_wake = np.real(
            fmm_part("P",
                     iprec=5,
                     kernel=0,
                     sources=w_places.T,
                     target=target.T,
                     dipvec=n_w.T,
                     dip_charge=mu_w_all * lwpanel)) / 2. / np.pi
        b = -b_body - b_wake

    # Solve for bodies' doublet strengths using explicit Kutta
    mu_b_all = np.linalg.solve(a, b)

    for Swim in Swimmers:
        Swim.Body.pressure(P, i)

        Swim.mu_guess = np.empty(2)  # [0] is current guess, [1] is previous
        Swim.delta_p = np.empty(2)  # [0] is current delta_p, [1] is previous
        Swim.Body.mu[:] = mu_b_all[Swim.i_b:Swim.i_b + Swim.Body.N]
        Swim.mu_guess[0] = Swim.Body.mu[-1] - Swim.Body.mu[0]

        Swim.Edge.mu = Swim.mu_guess[0]
        Swim.Edge.gamma[0] = -Swim.Edge.mu
        Swim.Edge.gamma[1] = Swim.Edge.mu

        # Get gamma of body panels for use in wake rollup
        Swim.Body.gamma[0] = -Swim.Body.mu[0]
        Swim.Body.gamma[1:-1] = Swim.Body.mu[:-1] - Swim.Body.mu[1:]
        Swim.Body.gamma[-1] = Swim.Body.mu[-1]
コード例 #7
0
def wake_rollup(Swimmers, DEL_T, i, P):
    """Performs wake rollup on the swimmers' wake panels.

    Args:
        Swimmers: List of Swimmer objects being simulated.
        DEL_T: Time step length.
        i: Time step number.
    """
    if (P['SW_ROLLUP']):
        # Wake panels initialize when i==1
        if i == 0:
            pass

        else:
            NT = i  # Number of targets (wake panel points that are rolling up)
            for SwimT in Swimmers:
                SwimT.Wake.vx = np.zeros(NT)
                SwimT.Wake.vz = np.zeros(NT)

                wake_x_midT = 0.5 * (SwimT.Wake.x[1:i + 1] + SwimT.Wake.x[:i])
                wake_z_midT = 0.5 * (SwimT.Wake.z[1:i + 1] + SwimT.Wake.z[:i])

                target = np.vstack((wake_x_midT, wake_z_midT))

                for SwimI in Swimmers:
                    wake_x_midI = 0.5 * (SwimI.Wake.x[1:i + 1] +
                                         SwimI.Wake.x[:i])
                    wake_z_midI = 0.5 * (SwimI.Wake.z[1:i + 1] +
                                         SwimI.Wake.z[:i])
                    edge_x_mid = 0.5 * (SwimI.Edge.x[1] + SwimI.Edge.x[0])
                    edge_z_mid = 0.5 * (SwimI.Edge.z[1] + SwimI.Edge.z[0])

                    ed_places = np.vstack((edge_x_mid, edge_z_mid))
                    bd_places = np.vstack(
                        (SwimT.Body.AF.x_col, SwimT.Body.AF.z_col))
                    bs_places = np.vstack(
                        (SwimT.Body.AF.x_mid[0, :], SwimT.Body.AF.z_mid[0, :]))
                    wd_places = np.vstack((wake_x_midI, wake_z_midI))

                    (nx_b, nz_b,
                     lbpanel) = panel_vectors(SwimI.Body.AF.x,
                                              SwimI.Body.AF.z)[2:]
                    (nx_e, nz_e,
                     lepanel) = panel_vectors(SwimI.Edge.x, SwimI.Edge.z)[2:]
                    (nx_w, nz_w,
                     lwpanel) = panel_vectors(SwimI.Wake.x[:i + 1],
                                              SwimI.Wake.z[:i + 1])[2:]

                    n_b = np.vstack((nx_b, nz_b))
                    n_e = np.vstack((nx_e, nz_e))
                    n_w = np.vstack((nx_w, nz_w))

                    # Body source influence on wake velocity
                    u_bs = np.real(
                        fmm_part(
                            "G",
                            iprec=5,
                            kernel=0,
                            sources=bs_places.T,
                            target=target.T,
                            mop_charge=SwimI.Body.sigma * lbpanel)) / np.pi
                    SwimT.Wake.vx += 2. * u_bs[:, 0]
                    SwimT.Wake.vz += -2. * u_bs[:, 1]

                    # Body doublet influence on wake velocity
                    u_bd = np.real(
                        fmm_part("G",
                                 iprec=5,
                                 kernel=0,
                                 sources=bd_places.T,
                                 target=target.T,
                                 dipvec=n_b.T,
                                 dip_charge=SwimI.Body.mu * lbpanel)) / np.pi
                    SwimT.Wake.vx += 2. * u_bd[:, 0]
                    SwimT.Wake.vz += -2. * u_bd[:, 1]

                    # TE panel influence on wake velocity
                    u_te = np.real(
                        fmm_part("G",
                                 iprec=5,
                                 kernel=0,
                                 sources=ed_places.T,
                                 target=target.T,
                                 dipvec=n_e.T,
                                 dip_charge=SwimI.Edge.mu * lepanel)) / np.pi
                    SwimT.Wake.vx += 2. * u_te[:, 0]
                    SwimT.Wake.vz += -2. * u_te[:, 1]

                    # Wake double influence on wake velocity
                    u_w = np.real(
                        fmm_part("G",
                                 iprec=5,
                                 kernel=0,
                                 sources=wd_places.T,
                                 target=target.T,
                                 dipvec=n_w.T,
                                 dip_charge=SwimI.Wake.mu[1:i + 1] *
                                 lwpanel)) / np.pi
                    u_w = np.nan_to_num(u_w)
                    SwimT.Wake.vx += 2. * u_w[:, 0]
                    SwimT.Wake.vz += -2. * u_w[:, 1]

            for Swim in Swimmers:
                # Modify wake with the total induced velocity
                Swim.Wake.x[1:i + 1] += Swim.Wake.vx * DEL_T
                Swim.Wake.z[1:i + 1] += Swim.Wake.vz * DEL_T