def add_event_to_table(self, event_id): """ add the current pyhessio event to a row in the `self.events` table """ ts, tns = pyhessio.get_central_event_gps_time() gpstime = Time(ts * u.s, tns * u.ns, format='gps', scale='utc') if self._prev_gpstime is None: self._prev_gpstime = gpstime if self._current_starttime is None: self._current_starttime = gpstime relative_time = gpstime - self._current_starttime delta_t = gpstime - self._prev_gpstime self._prev_gpstime = gpstime # build the trigger pattern as a fixed-length array # (better for storage in FITS format) trigtels = pyhessio.get_telescope_with_data_list() self._current_trigpattern[:] = 0 # zero the trigger pattern self._current_trigpattern[trigtels] = 1 # set the triggered tels to 1 # insert the row into the table self.events.add_row((event_id, relative_time.sec, delta_t.sec, len(trigtels), self._current_trigpattern))
def main(): # get command-line arguments: parser = argparse.ArgumentParser() parser.add_argument('filename', metavar='SIMTEL_FILE', help='Input simtelarray file') parser.add_argument('-o', '--output', metavar='FILENAME', help=('output filename (e.g. times.fits), which ' 'can be any format supported by astropy.table'), default='times.fits.gz') args = parser.parse_args() # setup output table events = Table(names=['EVENT_ID', 'T_REL', 'TRIGGERED_TELS'], dtype=[np.int64, np.float64, np.uint8]) events['TRIGGERED_TELS'].shape = (0, MAX_TELS) events['T_REL'].unit = u.s events['T_REL'].description = 'Time relative to first event' events.meta['INPUT'] = args.filename trigpattern = np.zeros(MAX_TELS) starttime = None try: pyhessio.file_open(args.filename) for run_id, event_id in pyhessio.move_to_next_event(): ts, tns = pyhessio.get_central_event_gps_time() gpstime = Time(ts * u.s, tns * u.ns, format='gps', scale='utc') if starttime is None: starttime = gpstime reltime = (gpstime - starttime).sec # build the trigger pattern as a fixed-length array # (better for storage in FITS format) trigtels = pyhessio.get_telescope_with_data_list() trigpattern[:] = 0 # zero the trigger pattern trigpattern[trigtels] = 1 # set the triggered telescopes to 1 events.add_row((event_id, reltime, trigpattern)) events.write(args.output) print("Table written to '{}'".format(args.output)) print(events) except Exception as err: print("ERROR: {}, stopping".format(err)) finally: pyhessio.close_file()
def main(): # get command-line arguments: parser=argparse.ArgumentParser() parser.add_argument('filename', metavar='SIMTEL_FILE', help='Input simtelarray file') parser.add_argument('-o','--output', metavar='FILENAME', help=('output filename (e.g. times.fits), which ' 'can be any format supported by astropy.table'), default='times.fits.gz') args = parser.parse_args() # setup output table events = Table(names=['EVENT_ID', 'T_REL', 'TRIGGERED_TELS'], dtype=[np.int64, np.float64, np.uint8]) events['TRIGGERED_TELS'].shape = (0, MAX_TELS) events['T_REL'].unit = u.s events['T_REL'].description = 'Time relative to first event' events.meta['INPUT'] = args.filename trigpattern = np.zeros(MAX_TELS) starttime = None try: pyhessio.file_open(args.filename) for run_id, event_id in pyhessio.move_to_next_event(): ts, tns = pyhessio.get_central_event_gps_time() gpstime = Time(ts*u.s, tns*u.ns, format='gps', scale='utc') if starttime is None: starttime = gpstime reltime = (gpstime - starttime).sec # build the trigger pattern as a fixed-length array # (better for storage in FITS format) trigtels = pyhessio.get_telescope_with_data_list() trigpattern[:] = 0 # zero the trigger pattern trigpattern[trigtels] = 1 # set the triggered telescopes to 1 events.add_row((event_id, reltime, trigpattern)) events.write(args.output) print("Table written to '{}'".format(args.output)) print(events) except Exception as err: print("ERROR: {}, stopping".format(err)) finally: pyhessio.close_file()
def hessio_event_source(url, max_events=None, allowed_tels=None): """A generator that streams data from an EventIO/HESSIO MC data file (e.g. a standard CTA data file.) Parameters ---------- url : str path to file to open max_events : int, optional maximum number of events to read allowed_tels : list[int] select only a subset of telescope, if None, all are read. This can be used for example emulate the final CTA data format, where there would be 1 telescope per file (whereas in current monte-carlo, they are all interleaved into one file) """ ret = pyhessio.file_open(url) if ret is not 0: raise RuntimeError("hessio_event_source failed to open '{}'" .format(url)) counter = 0 eventstream = pyhessio.move_to_next_event() if allowed_tels is not None: allowed_tels = set(allowed_tels) container = Container("hessio_container") container.meta.add_item('hessio__input', url) container.meta.add_item('hessio__max_events', max_events) container.meta.add_item('pixel_pos', dict()) container.meta.add_item('optical_foclen', dict()) container.add_item("dl0", RawData()) container.add_item("mc", MCEvent()) container.add_item("trig", CentralTriggerData()) container.add_item("count") for run_id, event_id in eventstream: container.dl0.run_id = run_id container.dl0.event_id = event_id container.dl0.tels_with_data = set(pyhessio.get_teldata_list()) # handle telescope filtering by taking the intersection of # tels_with_data and allowed_tels if allowed_tels is not None: selected = container.dl0.tels_with_data & allowed_tels if len(selected) == 0: continue # skip event container.dl0.tels_with_data = selected container.trig.tels_with_trigger \ = pyhessio.get_central_event_teltrg_list() time_s, time_ns = pyhessio.get_central_event_gps_time() container.trig.gps_time = Time(time_s * u.s, time_ns * u.ns, format='gps', scale='utc') container.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV container.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad) container.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad) container.mc.core_x = pyhessio.get_mc_event_xcore() * u.m container.mc.core_y = pyhessio.get_mc_event_ycore() * u.m container.count = counter # this should be done in a nicer way to not re-allocate the # data each time (right now it's just deleted and garbage # collected) container.dl0.tel = dict() # clear the previous telescopes for tel_id in container.dl0.tels_with_data: # fill pixel position dictionary, if not already done: if tel_id not in container.meta.pixel_pos: container.meta.pixel_pos[tel_id] \ = pyhessio.get_pixel_position(tel_id) * u.m container.meta.optical_foclen[tel_id] = pyhessio.get_optical_foclen(tel_id) * u.m; # fill the photo electrons list if tel_id not in container.mc.photo_electrons: container.mc.photo_electrons[tel_id] = dict() for pix_id in range(pyhessio.get_num_pixels(tel_id)): container.mc.photo_electrons[tel_id][pix_id] = pyhessio.get_mc_number_photon_electron(tel_id, pix_id)[0] nchans = pyhessio.get_num_channel(tel_id) container.dl0.tel[tel_id] = RawCameraData(tel_id) container.dl0.tel[tel_id].num_channels = nchans # load the data per telescope/chan for chan in range(nchans): container.dl0.tel[tel_id].adc_samples[chan] \ = pyhessio.get_adc_sample(channel=chan, telescope_id=tel_id) container.dl0.tel[tel_id].adc_sums[chan] \ = pyhessio.get_adc_sum(channel=chan, telescope_id=tel_id) yield container counter += 1 if max_events is not None and counter > max_events: return
'telheight': height, 'Npix': numpix, 'mirarea': mirarea, 'mirradii': mirradii, 'holeradii': holeradii, 'secondmirradii': mir2radii, 'secondholeradii': hole2radii} print(teloptconfigdict) impact = list() geom = 0 for event in source: container.dl0.tels_with_data = set(pyhessio.get_teldata_list()) container.trig.tels_with_trigger \ = pyhessio.get_central_event_teltrg_list() time_s, time_ns = pyhessio.get_central_event_gps_time() container.trig.gps_time = Time(time_s * u.s, time_ns * u.ns, format='gps', scale='utc') container.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV container.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad) container.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad) container.mc.core_x = pyhessio.get_mc_event_xcore() * u.m container.mc.core_y = pyhessio.get_mc_event_ycore() * u.m # this should be done in a nicer way to not re-allocate the # data each time (right now it's just deleted and garbage # collected) container.dl0.tel = dict() # clear the previous telescopes table = "CameraTable_VersionFeb2016_TelID"
def hessio_event_source(url, max_events=None, allowed_tels=None): """A generator that streams data from an EventIO/HESSIO MC data file (e.g. a standard CTA data file.) Parameters ---------- url : str path to file to open max_events : int, optional maximum number of events to read allowed_tels : list[int] select only a subset of telescope, if None, all are read. This can be used for example emulate the final CTA data format, where there would be 1 telescope per file (whereas in current monte-carlo, they are all interleaved into one file) """ ret = pyhessio.file_open(url) if ret is not 0: raise RuntimeError("hessio_event_source failed to open '{}'" .format(url)) # the container is initialized once, and data is replaced within # it after each yield counter = 0 eventstream = pyhessio.move_to_next_event() if allowed_tels is not None: allowed_tels = set(allowed_tels) event = EventContainer() event.meta.source = "hessio" # some hessio_event_source specific parameters event.meta.add_item('hessio__input', url) event.meta.add_item('hessio__max_events', max_events) for run_id, event_id in eventstream: event.dl0.run_id = run_id event.dl0.event_id = event_id event.dl0.tels_with_data = set(pyhessio.get_teldata_list()) # handle telescope filtering by taking the intersection of # tels_with_data and allowed_tels if allowed_tels is not None: selected = event.dl0.tels_with_data & allowed_tels if len(selected) == 0: continue # skip event event.dl0.tels_with_data = selected event.trig.tels_with_trigger \ = pyhessio.get_central_event_teltrg_list() time_s, time_ns = pyhessio.get_central_event_gps_time() event.trig.gps_time = Time(time_s * u.s, time_ns * u.ns, format='gps', scale='utc') event.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV event.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad) event.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad) event.mc.core_x = pyhessio.get_mc_event_xcore() * u.m event.mc.core_y = pyhessio.get_mc_event_ycore() * u.m event.mc.h_first_int = pyhessio.get_mc_shower_h_first_int() * u.m event.count = counter # this should be done in a nicer way to not re-allocate the # data each time (right now it's just deleted and garbage # collected) event.dl0.tel = dict() # clear the previous telescopes event.mc.tel = dict() # clear the previous telescopes for tel_id in event.dl0.tels_with_data: # fill pixel position dictionary, if not already done: if tel_id not in event.meta.pixel_pos: event.meta.pixel_pos[tel_id] \ = pyhessio.get_pixel_position(tel_id) * u.m event.meta.optical_foclen[ tel_id] = pyhessio.get_optical_foclen(tel_id) * u.m # fill telescope position dictionary, if not already done: if tel_id not in event.meta.tel_pos: event.meta.tel_pos[ tel_id] = pyhessio.get_telescope_position(tel_id) * u.m nchans = pyhessio.get_num_channel(tel_id) npix = pyhessio.get_num_pixels(tel_id) nsamples = pyhessio.get_num_samples(tel_id) event.dl0.tel[tel_id] = RawCameraData(tel_id) event.dl0.tel[tel_id].num_channels = nchans event.dl0.tel[tel_id].num_pixels = npix event.dl0.tel[tel_id].num_samples = nsamples event.mc.tel[tel_id] = MCCamera(tel_id) event.dl0.tel[tel_id].calibration \ = pyhessio.get_calibration(tel_id) event.dl0.tel[tel_id].pedestal \ = pyhessio.get_pedestal(tel_id) # load the data per telescope/chan for chan in range(nchans): event.dl0.tel[tel_id].adc_samples[chan] \ = pyhessio.get_adc_sample(channel=chan, telescope_id=tel_id) event.dl0.tel[tel_id].adc_sums[chan] \ = pyhessio.get_adc_sum(channel=chan, telescope_id=tel_id) event.mc.tel[tel_id].refshapes[chan] = \ pyhessio.get_ref_shapes(tel_id, chan) # load the data per telescope/pixel event.mc.tel[tel_id].photo_electrons \ = pyhessio.get_mc_number_photon_electron(telescope_id=tel_id) event.mc.tel[tel_id].refstep = pyhessio.get_ref_step(tel_id) event.mc.tel[tel_id].lrefshape = pyhessio.get_lrefshape(tel_id) event.mc.tel[tel_id].time_slice = \ pyhessio.get_time_slice(tel_id) yield event counter += 1 if max_events is not None and counter >= max_events: return
efficiency = list() efficiency.append(list()) efficiency.append(list()) efficiency.append(list()) efficiency.append(list()) impact = list() geom = 0 for event in source: container.dl0.tels_with_data = set(pyhessio.get_teldata_list()) container.trig.tels_with_trigger \ = pyhessio.get_central_event_teltrg_list() time_s, time_ns = pyhessio.get_central_event_gps_time() container.trig.gps_time = Time(time_s * u.s, time_ns * u.ns, format='gps', scale='utc') container.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV container.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad) container.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad) container.mc.core_x = pyhessio.get_mc_event_xcore() * u.m container.mc.core_y = pyhessio.get_mc_event_ycore() * u.m # this should be done in a nicer way to not re-allocate the # data each time (right now it's just deleted and garbage # collected) container.dl0.tel = dict() # clear the previous telescopes table = "CameraTable_VersionFeb2016_TelID"
def hessio_event_source(url, max_events=None, allowed_tels=None): """A generator that streams data from an EventIO/HESSIO MC data file (e.g. a standard CTA data file.) Parameters ---------- url : str path to file to open max_events : int, optional maximum number of events to read allowed_tels : list[int] select only a subset of telescope, if None, all are read. This can be used for example emulate the final CTA data format, where there would be 1 telescope per file (whereas in current monte-carlo, they are all interleaved into one file) """ ret = pyhessio.file_open(url) if ret is not 0: raise RuntimeError( "hessio_event_source failed to open '{}'".format(url)) counter = 0 eventstream = pyhessio.move_to_next_event() if allowed_tels is not None: allowed_tels = set(allowed_tels) container = Container("hessio_container") container.meta.add_item('hessio__input', url) container.meta.add_item('hessio__max_events', max_events) container.meta.add_item('pixel_pos', dict()) container.meta.add_item('optical_foclen', dict()) container.add_item("dl0", RawData()) container.add_item("mc", MCShowerData()) container.add_item("trig", CentralTriggerData()) container.add_item("count") for run_id, event_id in eventstream: container.dl0.run_id = run_id container.dl0.event_id = event_id container.dl0.tels_with_data = set(pyhessio.get_teldata_list()) # handle telescope filtering by taking the intersection of # tels_with_data and allowed_tels if allowed_tels is not None: selected = container.dl0.tels_with_data & allowed_tels if len(selected) == 0: continue # skip event container.dl0.tels_with_data = selected container.trig.tels_with_trigger \ = pyhessio.get_central_event_teltrg_list() time_s, time_ns = pyhessio.get_central_event_gps_time() container.trig.gps_time = Time(time_s * u.s, time_ns * u.ns, format='gps', scale='utc') container.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV container.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad) container.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad) container.mc.core_x = pyhessio.get_mc_event_xcore() * u.m container.mc.core_y = pyhessio.get_mc_event_ycore() * u.m container.count = counter # this should be done in a nicer way to not re-allocate the # data each time (right now it's just deleted and garbage # collected) container.dl0.tel = dict() # clear the previous telescopes for tel_id in container.dl0.tels_with_data: # fill pixel position dictionary, if not already done: if tel_id not in container.meta.pixel_pos: container.meta.pixel_pos[tel_id] \ = pyhessio.get_pixel_position(tel_id) * u.m container.meta.optical_foclen[ tel_id] = pyhessio.get_optical_foclen(tel_id) * u.m nchans = pyhessio.get_num_channel(tel_id) container.dl0.tel[tel_id] = RawCameraData(tel_id) container.dl0.tel[tel_id].num_channels = nchans # load the data per telescope/chan for chan in range(nchans): container.dl0.tel[tel_id].adc_samples[chan] \ = pyhessio.get_adc_sample(channel=chan, telescope_id=tel_id) container.dl0.tel[tel_id].adc_sums[chan] \ = pyhessio.get_adc_sum(channel=chan, telescope_id=tel_id) yield container counter += 1 if max_events is not None and counter > max_events: return