def test_dominates(self): print(">> ContinuumRule.dominates(self, rule)") for i in range(self.__nb_unit_test): variables, domains = self.random_system() var = random.randint(0, len(variables) - 1) r = self.random_rule(variables, domains) # Undominated rule: var = emptyset if anything r0 = ContinuumRule(r.get_head_variable(), Continuum()) self.assertTrue(r0.dominates(r0)) # r1 is a regular rule r1 = self.random_rule(variables, domains) while r1.size() == 0: r1 = self.random_rule(variables, domains) var = r.get_head_variable() val = Continuum.random(domains[var].get_min_value(), domains[var].get_max_value()) r1 = ContinuumRule(var, val, r1.get_body()) # set head self.assertTrue(r0.dominates(r1)) self.assertFalse(r1.dominates(r0)) # r2 is precision of r1 (head specification) r2 = r1.copy() var = r2.get_head_variable() val = r2.get_head_value() while r2.get_head_value( ) == val or not r2.get_head_value().includes(val): val = Continuum.random(val.get_min_value(), val.get_max_value()) r2.set_head_value(val) self.assertEqual(r0.dominates(r2), True) self.assertEqual(r2.dominates(r0), False) self.assertEqual(r2.dominates(r1), True) self.assertEqual(r1.dominates(r2), False) # r3 is a generalization of r1 (body generalization) r3 = r1.copy() var, val = random.choice(r3.get_body()) val_ = val modif_min = random.uniform(0, self.__max_value) modif_max = random.uniform(0, self.__max_value) while val_ == val or not val_.includes(val): val_ = Continuum.random(val.get_min_value() - modif_min, val.get_max_value() + modif_max) r3.set_condition(var, val_) self.assertEqual(r0.dominates(r3), True) self.assertEqual(r3.dominates(r0), False) self.assertEqual(r3.dominates(r1), True) self.assertEqual(r1.dominates(r3), False) # r4 is unprecision of r1 (head generalization) r4 = r1.copy() var = r4.get_head_variable() val = r4.get_head_value() modif_min = random.uniform(0, self.__max_value) modif_max = random.uniform(0, self.__max_value) while r4.get_head_value() == val or not val.includes( r4.get_head_value()): val = Continuum(val.get_min_value() - modif_min, val.get_max_value() + modif_max, random.choice([True, False]), random.choice([True, False])) r4.set_head_value(val) self.assertEqual(r0.dominates(r4), True) self.assertEqual(r4.dominates(r0), False) self.assertEqual(r4.dominates(r1), False) self.assertEqual(r1.dominates(r4), True) # r5 is specialization of r1 (body specialization) r5 = r1.copy() var, val = random.choice(r5.get_body()) val_ = val while val_ == val or not val.includes(val_): val_ = Continuum.random(val.get_min_value(), val.get_max_value()) r5.set_condition(var, val_) self.assertEqual(r0.dominates(r5), True) self.assertEqual(r5.dominates(r0), False) self.assertEqual(r5.dominates(r1), False) self.assertEqual(r1.dominates(r5), True) # r6 is a random rule r6 = self.random_rule(variables, domains) # head var difference if r6.get_head_variable() != r1.get_head_variable(): self.assertFalse(r6.dominates(r1)) self.assertFalse(r1.dominates(r6)) r6 = ContinuumRule(r1.get_head_variable(), r6.get_head_value(), r6.get_body()) # same head var #eprint("r1: ", r1) #eprint("r6: ", r6) # head val inclusion if not r1.get_head_value().includes(r6.get_head_value()): self.assertFalse(r6.dominates(r1)) r6 = ContinuumRule(r1.get_head_variable(), r1.get_head_value(), r6.get_body()) # same head var, same head val # body subsumption if r1.dominates(r6): for var, val in r1.get_body(): self.assertTrue(val.includes(r6.get_condition(var))) # body subsumption if r6.dominates(r1): for var, val in r6.get_body(): self.assertTrue(val.includes(r1.get_condition(var))) # incomparable if not r1.dominates(r6) and not r6.dominates(r1): #eprint("r1: ", r1) #eprint("r6: ", r6) conflicts = False dominant_r1 = False dominant_r6 = False for var, val in r1.get_body(): # condition not appearing if not r6.has_condition(var): conflicts = True break # value not included if not r6.get_condition(var).includes( val) and not val.includes(r6.get_condition(var)): conflicts = True break # local dominates if val.includes(r6.get_condition(var)): dominant_r1 = True # local dominated if r6.get_condition(var).includes(val): if dominant_r1: conflicts = True break for var, val in r6.get_body(): # condition not appearing if not r1.has_condition(var): conflicts = True break # value not included if not r1.get_condition(var).includes( val) and not val.includes(r1.get_condition(var)): conflicts = True break # local dominates if val.includes(r1.get_condition(var)): dominant_r6 = True if dominant_r1: conflicts = True break # local dominated if r1.get_condition(var).includes(val): if dominant_r6: conflicts = True break self.assertTrue(conflicts)
def test_least_revision(self): eprint(">> ACEDIA.least_revision(rule, state_1, state_2)") for i in range(self.__nb_unit_test): variables, domains = self.random_system() state_1 = self.random_state(variables, domains) state_2 = self.random_state(variables, domains) # not matching #-------------- rule = self.random_rule(variables, domains) while rule.matches(state_1): rule = self.random_rule(variables, domains) self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1, state_2) # matching #-------------- rule = self.random_rule(variables, domains) while not rule.matches(state_1): rule = self.random_rule(variables, domains) head_var = rule.get_head_variable() target_val = state_2[rule.get_head_variable()] # Consistent head_value = Continuum() while not head_value.includes(target_val): head_value = Continuum.random( domains[head_var].get_min_value(), domains[head_var].get_max_value()) rule.set_head_value(head_value) self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1, state_2) # Empty set head rule.set_head_value(Continuum()) LR = ACEDIA.least_revision(rule, state_1, state_2) lg = rule.copy() lg.set_head_value(Continuum(target_val, target_val, True, True)) self.assertTrue(lg in LR) nb_valid_revision = 1 for var, val in rule.get_body(): state_value = state_1[var] # min rev ls = rule.copy() new_val = val.copy() new_val.set_lower_bound(state_value, False) if not new_val.is_empty(): ls.set_condition(var, new_val) self.assertTrue(ls in LR) nb_valid_revision += 1 # max rev ls = rule.copy() new_val = val.copy() new_val.set_upper_bound(state_value, False) if not new_val.is_empty(): ls.set_condition(var, new_val) self.assertTrue(ls in LR) nb_valid_revision += 1 self.assertEqual(len(LR), nb_valid_revision) #eprint(nb_valid_revision) # usual head head_value = Continuum.random(domains[head_var].get_min_value(), domains[head_var].get_max_value()) while head_value.includes(target_val): head_value = Continuum.random( domains[head_var].get_min_value(), domains[head_var].get_max_value()) rule.set_head_value(head_value) LR = ACEDIA.least_revision(rule, state_1, state_2) lg = rule.copy() head_value = lg.get_head_value() if target_val <= head_value.get_min_value(): head_value.set_lower_bound(target_val, True) else: head_value.set_upper_bound(target_val, True) lg.set_head_value(head_value) self.assertTrue(lg in LR) nb_valid_revision = 1 for var, val in rule.get_body(): state_value = state_1[var] # min rev ls = rule.copy() new_val = val.copy() new_val.set_lower_bound(state_value, False) if not new_val.is_empty(): ls.set_condition(var, new_val) self.assertTrue(ls in LR) nb_valid_revision += 1 # max rev ls = rule.copy() new_val = val.copy() new_val.set_upper_bound(state_value, False) if not new_val.is_empty(): ls.set_condition(var, new_val) self.assertTrue(ls in LR) nb_valid_revision += 1 self.assertEqual(len(LR), nb_valid_revision)
def test_includes(self): eprint(">> Continuum.includes(self, element)") for i in range(self.__nb_unit_test): # bad argument type c = Continuum.random(self.__min_value, self.__max_value) self.assertRaises(TypeError, c.includes, "test") # float argument #---------------- # empty set includes nothing c = Continuum() value = random.uniform(self.__min_value, self.__max_value) self.assertFalse(c.includes(value)) c = Continuum.random(self.__min_value, self.__max_value) # Before min value = c.get_min_value() while value == c.get_min_value(): value = random.uniform(c.get_min_value() - 100.0, c.get_min_value()) self.assertFalse(c.includes(value)) # on min bound self.assertEqual(c.includes(c.get_min_value()), c.min_included()) # Inside value = c.get_min_value() while value == c.get_min_value() or value == c.get_max_value(): value = random.uniform(c.get_min_value(), c.get_max_value()) self.assertTrue(c.includes(value)) # on max bound self.assertEqual(c.includes(c.get_max_value()), c.max_included()) # after max bound value = c.get_max_value() while value == c.get_max_value(): value = random.uniform(c.get_max_value(), c.get_max_value() + 100.0) self.assertFalse(c.includes(value)) # int argument #-------------- # empty set includes nothing c = Continuum() value = random.randint(int(self.__min_value), int(self.__max_value)) self.assertFalse(c.includes(value)) c = Continuum.random(self.__min_value, self.__max_value) while int(c.get_max_value()) - int(c.get_min_value()) <= 1: min = random.uniform(self.__min_value, self.__max_value) max = random.uniform(min, self.__max_value) c = Continuum.random(min, max) #eprint(c.to_string()) # Before min value = random.randint(int(c.get_min_value() - 100), int(c.get_min_value()) - 1) self.assertFalse(c.includes(value)) # on min bound self.assertEqual(c.includes(c.get_min_value()), c.min_included()) # Inside value = random.randint( int(c.get_min_value()) + 1, int(c.get_max_value()) - 1) #eprint(value) self.assertTrue(c.includes(value)) # on max bound self.assertEqual(c.includes(c.get_max_value()), c.max_included()) # after max bound value = random.randint( int(c.get_max_value()) + 1, int(c.get_max_value() + 100)) self.assertFalse(c.includes(value)) # continuum argument #-------------------- # 0) c is empty set c = Continuum() c_ = Continuum() self.assertTrue(c.includes(c_)) # empty set VS empty set c_ = Continuum.random(self.__min_value, self.__max_value) while c_.is_empty(): c_ = Continuum.random(self.__min_value, self.__max_value) self.assertFalse(c.includes(c_)) # empty set VS non empty # 1) c is non empty c = Continuum.random(self.__min_value, self.__max_value) self.assertTrue(c.includes(Continuum())) # non empty VS empty set self.assertTrue(c.includes(c)) # includes itself # 1.1) Lower bound over c_ = Continuum.random(c.get_min_value(), self.__max_value) while c_.is_empty(): c_ = Continuum.random(c.get_min_value(), self.__max_value) value = c.get_min_value() while value == c.get_min_value(): value = random.uniform(c.get_min_value() - 100, c.get_min_value()) c_.set_lower_bound(value, random.choice([True, False])) self.assertFalse(c.includes(c_)) # 1.2) on min bound c_ = Continuum.random(c.get_min_value(), self.__max_value) while c_.is_empty(): c_ = Continuum.random(c.get_min_value(), self.__max_value) c_.set_lower_bound(c.get_min_value(), random.choice([True, False])) if not c.min_included() and c_.min_included(): # one value over self.assertFalse(c.includes(c_)) # 1.3) upper bound over c_ = Continuum.random(self.__min_value, c.get_max_value()) while c_.is_empty(): c_ = Continuum.random(self.__min_value, c.get_max_value()) value = c.get_max_value() while value == c.get_max_value(): value = random.uniform(c.get_max_value(), c.get_max_value() + 100) c_.set_upper_bound(value, random.choice([True, False])) self.assertFalse(c.includes(c_)) # 1.4) on upper bound c_ = Continuum.random(self.__min_value, c.get_max_value()) while c_.is_empty(): c_ = Continuum.random(self.__min_value, c.get_max_value()) c_.set_upper_bound(c.get_max_value(), random.choice([True, False])) if not c.max_included() and c_.max_included(): # one value over self.assertFalse(c.includes(c_)) # 1.5) inside min = c.get_min_value() while min == c.get_min_value(): min = random.uniform(c.get_min_value(), c.get_max_value()) max = c.get_max_value() while max == c.get_max_value(): max = random.uniform(min, c.get_max_value()) c_ = Continuum(min, max, random.choice([True, False]), random.choice([True, False])) self.assertTrue(c.includes(c_)) self.assertFalse(c_.includes(c))