示例#1
0
    def test_dominates(self):
        print(">> ContinuumRule.dominates(self, rule)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            var = random.randint(0, len(variables) - 1)
            r = self.random_rule(variables, domains)

            # Undominated rule: var = emptyset if anything
            r0 = ContinuumRule(r.get_head_variable(), Continuum())

            self.assertTrue(r0.dominates(r0))

            # r1 is a regular rule
            r1 = self.random_rule(variables, domains)
            while r1.size() == 0:
                r1 = self.random_rule(variables, domains)
            var = r.get_head_variable()
            val = Continuum.random(domains[var].get_min_value(),
                                   domains[var].get_max_value())
            r1 = ContinuumRule(var, val, r1.get_body())  # set head

            self.assertTrue(r0.dominates(r1))
            self.assertFalse(r1.dominates(r0))

            # r2 is precision of r1 (head specification)
            r2 = r1.copy()
            var = r2.get_head_variable()
            val = r2.get_head_value()
            while r2.get_head_value(
            ) == val or not r2.get_head_value().includes(val):
                val = Continuum.random(val.get_min_value(),
                                       val.get_max_value())
            r2.set_head_value(val)

            self.assertEqual(r0.dominates(r2), True)
            self.assertEqual(r2.dominates(r0), False)
            self.assertEqual(r2.dominates(r1), True)
            self.assertEqual(r1.dominates(r2), False)

            # r3 is a generalization of r1 (body generalization)
            r3 = r1.copy()
            var, val = random.choice(r3.get_body())
            val_ = val
            modif_min = random.uniform(0, self.__max_value)
            modif_max = random.uniform(0, self.__max_value)
            while val_ == val or not val_.includes(val):
                val_ = Continuum.random(val.get_min_value() - modif_min,
                                        val.get_max_value() + modif_max)
            r3.set_condition(var, val_)

            self.assertEqual(r0.dominates(r3), True)
            self.assertEqual(r3.dominates(r0), False)
            self.assertEqual(r3.dominates(r1), True)
            self.assertEqual(r1.dominates(r3), False)

            # r4 is unprecision of r1 (head generalization)
            r4 = r1.copy()
            var = r4.get_head_variable()
            val = r4.get_head_value()
            modif_min = random.uniform(0, self.__max_value)
            modif_max = random.uniform(0, self.__max_value)
            while r4.get_head_value() == val or not val.includes(
                    r4.get_head_value()):
                val = Continuum(val.get_min_value() - modif_min,
                                val.get_max_value() + modif_max,
                                random.choice([True, False]),
                                random.choice([True, False]))
            r4.set_head_value(val)

            self.assertEqual(r0.dominates(r4), True)
            self.assertEqual(r4.dominates(r0), False)
            self.assertEqual(r4.dominates(r1), False)
            self.assertEqual(r1.dominates(r4), True)

            # r5 is specialization of r1 (body specialization)
            r5 = r1.copy()
            var, val = random.choice(r5.get_body())
            val_ = val
            while val_ == val or not val.includes(val_):
                val_ = Continuum.random(val.get_min_value(),
                                        val.get_max_value())
            r5.set_condition(var, val_)

            self.assertEqual(r0.dominates(r5), True)
            self.assertEqual(r5.dominates(r0), False)
            self.assertEqual(r5.dominates(r1), False)
            self.assertEqual(r1.dominates(r5), True)

            # r6 is a random rule
            r6 = self.random_rule(variables, domains)

            # head var difference
            if r6.get_head_variable() != r1.get_head_variable():
                self.assertFalse(r6.dominates(r1))
                self.assertFalse(r1.dominates(r6))

            r6 = ContinuumRule(r1.get_head_variable(), r6.get_head_value(),
                               r6.get_body())  # same head var
            #eprint("r1: ", r1)
            #eprint("r6: ", r6)

            # head val inclusion
            if not r1.get_head_value().includes(r6.get_head_value()):
                self.assertFalse(r6.dominates(r1))

            r6 = ContinuumRule(r1.get_head_variable(), r1.get_head_value(),
                               r6.get_body())  # same head var, same head val

            # body subsumption
            if r1.dominates(r6):
                for var, val in r1.get_body():
                    self.assertTrue(val.includes(r6.get_condition(var)))

            # body subsumption
            if r6.dominates(r1):
                for var, val in r6.get_body():
                    self.assertTrue(val.includes(r1.get_condition(var)))

            # incomparable
            if not r1.dominates(r6) and not r6.dominates(r1):
                #eprint("r1: ", r1)
                #eprint("r6: ", r6)

                conflicts = False
                dominant_r1 = False
                dominant_r6 = False
                for var, val in r1.get_body():
                    # condition not appearing
                    if not r6.has_condition(var):
                        conflicts = True
                        break

                    # value not included
                    if not r6.get_condition(var).includes(
                            val) and not val.includes(r6.get_condition(var)):
                        conflicts = True
                        break

                    # local dominates
                    if val.includes(r6.get_condition(var)):
                        dominant_r1 = True

                    # local dominated
                    if r6.get_condition(var).includes(val):
                        if dominant_r1:
                            conflicts = True
                            break

                for var, val in r6.get_body():
                    # condition not appearing
                    if not r1.has_condition(var):
                        conflicts = True
                        break

                    # value not included
                    if not r1.get_condition(var).includes(
                            val) and not val.includes(r1.get_condition(var)):
                        conflicts = True
                        break

                    # local dominates
                    if val.includes(r1.get_condition(var)):
                        dominant_r6 = True
                        if dominant_r1:
                            conflicts = True
                            break

                    # local dominated
                    if r1.get_condition(var).includes(val):
                        if dominant_r6:
                            conflicts = True
                            break

                self.assertTrue(conflicts)
示例#2
0
    def test_least_revision(self):
        eprint(">> ACEDIA.least_revision(rule, state_1, state_2)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()

            state_1 = self.random_state(variables, domains)
            state_2 = self.random_state(variables, domains)

            # not matching
            #--------------
            rule = self.random_rule(variables, domains)
            while rule.matches(state_1):
                rule = self.random_rule(variables, domains)

            self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1,
                              state_2)

            # matching
            #--------------

            rule = self.random_rule(variables, domains)
            while not rule.matches(state_1):
                rule = self.random_rule(variables, domains)

            head_var = rule.get_head_variable()
            target_val = state_2[rule.get_head_variable()]

            # Consistent
            head_value = Continuum()
            while not head_value.includes(target_val):
                head_value = Continuum.random(
                    domains[head_var].get_min_value(),
                    domains[head_var].get_max_value())
            rule.set_head_value(head_value)
            self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1,
                              state_2)

            # Empty set head
            rule.set_head_value(Continuum())

            LR = ACEDIA.least_revision(rule, state_1, state_2)
            lg = rule.copy()
            lg.set_head_value(Continuum(target_val, target_val, True, True))
            self.assertTrue(lg in LR)

            nb_valid_revision = 1

            for var, val in rule.get_body():
                state_value = state_1[var]

                # min rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_lower_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

                # max rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_upper_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

            self.assertEqual(len(LR), nb_valid_revision)

            #eprint(nb_valid_revision)

            # usual head
            head_value = Continuum.random(domains[head_var].get_min_value(),
                                          domains[head_var].get_max_value())
            while head_value.includes(target_val):
                head_value = Continuum.random(
                    domains[head_var].get_min_value(),
                    domains[head_var].get_max_value())
            rule.set_head_value(head_value)

            LR = ACEDIA.least_revision(rule, state_1, state_2)

            lg = rule.copy()
            head_value = lg.get_head_value()
            if target_val <= head_value.get_min_value():
                head_value.set_lower_bound(target_val, True)
            else:
                head_value.set_upper_bound(target_val, True)
            lg.set_head_value(head_value)
            self.assertTrue(lg in LR)

            nb_valid_revision = 1

            for var, val in rule.get_body():
                state_value = state_1[var]

                # min rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_lower_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

                # max rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_upper_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

            self.assertEqual(len(LR), nb_valid_revision)
示例#3
0
    def test_includes(self):
        eprint(">> Continuum.includes(self, element)")

        for i in range(self.__nb_unit_test):

            # bad argument type
            c = Continuum.random(self.__min_value, self.__max_value)

            self.assertRaises(TypeError, c.includes, "test")

            # float argument
            #----------------

            # empty set includes nothing
            c = Continuum()
            value = random.uniform(self.__min_value, self.__max_value)
            self.assertFalse(c.includes(value))

            c = Continuum.random(self.__min_value, self.__max_value)

            # Before min
            value = c.get_min_value()
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value() - 100.0,
                                       c.get_min_value())

            self.assertFalse(c.includes(value))

            # on min bound
            self.assertEqual(c.includes(c.get_min_value()), c.min_included())

            # Inside
            value = c.get_min_value()
            while value == c.get_min_value() or value == c.get_max_value():
                value = random.uniform(c.get_min_value(), c.get_max_value())

            self.assertTrue(c.includes(value))

            # on max bound
            self.assertEqual(c.includes(c.get_max_value()), c.max_included())

            # after max bound
            value = c.get_max_value()
            while value == c.get_max_value():
                value = random.uniform(c.get_max_value(),
                                       c.get_max_value() + 100.0)

            self.assertFalse(c.includes(value))

            # int argument
            #--------------

            # empty set includes nothing
            c = Continuum()
            value = random.randint(int(self.__min_value),
                                   int(self.__max_value))
            self.assertFalse(c.includes(value))

            c = Continuum.random(self.__min_value, self.__max_value)

            while int(c.get_max_value()) - int(c.get_min_value()) <= 1:
                min = random.uniform(self.__min_value, self.__max_value)
                max = random.uniform(min, self.__max_value)

                c = Continuum.random(min, max)

            #eprint(c.to_string())

            # Before min
            value = random.randint(int(c.get_min_value() - 100),
                                   int(c.get_min_value()) - 1)

            self.assertFalse(c.includes(value))

            # on min bound
            self.assertEqual(c.includes(c.get_min_value()), c.min_included())

            # Inside
            value = random.randint(
                int(c.get_min_value()) + 1,
                int(c.get_max_value()) - 1)

            #eprint(value)

            self.assertTrue(c.includes(value))

            # on max bound
            self.assertEqual(c.includes(c.get_max_value()), c.max_included())

            # after max bound
            value = random.randint(
                int(c.get_max_value()) + 1, int(c.get_max_value() + 100))

            self.assertFalse(c.includes(value))

            # continuum argument
            #--------------------

            # 0) c is empty set
            c = Continuum()
            c_ = Continuum()
            self.assertTrue(c.includes(c_))  # empty set VS empty set

            c_ = Continuum.random(self.__min_value, self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, self.__max_value)
            self.assertFalse(c.includes(c_))  # empty set VS non empty

            # 1) c is non empty
            c = Continuum.random(self.__min_value, self.__max_value)

            self.assertTrue(c.includes(Continuum()))  # non empty VS empty set
            self.assertTrue(c.includes(c))  # includes itself

            # 1.1) Lower bound over
            c_ = Continuum.random(c.get_min_value(), self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(c.get_min_value(), self.__max_value)

            value = c.get_min_value()
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value() - 100,
                                       c.get_min_value())

            c_.set_lower_bound(value, random.choice([True, False]))
            self.assertFalse(c.includes(c_))

            # 1.2) on min bound
            c_ = Continuum.random(c.get_min_value(), self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(c.get_min_value(), self.__max_value)
            c_.set_lower_bound(c.get_min_value(), random.choice([True, False]))

            if not c.min_included() and c_.min_included():  # one value over
                self.assertFalse(c.includes(c_))

            # 1.3) upper bound over
            c_ = Continuum.random(self.__min_value, c.get_max_value())
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, c.get_max_value())

            value = c.get_max_value()
            while value == c.get_max_value():
                value = random.uniform(c.get_max_value(),
                                       c.get_max_value() + 100)

            c_.set_upper_bound(value, random.choice([True, False]))

            self.assertFalse(c.includes(c_))

            # 1.4) on upper bound
            c_ = Continuum.random(self.__min_value, c.get_max_value())
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, c.get_max_value())
            c_.set_upper_bound(c.get_max_value(), random.choice([True, False]))

            if not c.max_included() and c_.max_included():  # one value over
                self.assertFalse(c.includes(c_))

            # 1.5) inside
            min = c.get_min_value()
            while min == c.get_min_value():
                min = random.uniform(c.get_min_value(), c.get_max_value())
            max = c.get_max_value()
            while max == c.get_max_value():
                max = random.uniform(min, c.get_max_value())
            c_ = Continuum(min, max, random.choice([True, False]),
                           random.choice([True, False]))

            self.assertTrue(c.includes(c_))
            self.assertFalse(c_.includes(c))