コード例 #1
0
    def run(self):
        print("Quantitative Processing in Progress...")

        # TODO: Include data etc. in experiment file

        self.update_pbar()

        if self.filetype == ID_Format_jcamp:
            # Load data using JCAMP_reader
            from pyms.GCMS.IO.JCAMP import JCAMP_reader
            data = JCAMP_reader(self.properties["Original Filename"])

        elif self.filetype == ID_Format_mzML:
            # Load data using JCAMP_reader
            from pyms.GCMS.IO.MZML import MZML_reader
            data = MZML_reader(self.properties["Original Filename"])

        elif self.filetype == ID_Format_ANDI:
            # Load data using JCAMP_reader
            from pyms.GCMS.IO.ANDI import ANDI_reader
            data = ANDI_reader(self.properties["Original Filename"])

        else:
            # Unknown Format
            return
        # TODO: Waters RAW, Thermo RAW, Agilent .d

        self.update_pbar()

        method = Method.Method(self.properties["Method"])

        self.update_pbar()

        # list of all retention times, in seconds
        times = data.get_time_list()
        # get Total Ion Chromatogram
        tic = data.get_tic()
        # RT Range, time step, no. scans, min, max, mean and median m/z
        data.info()

        # Build "intensity matrix" by binning data with integer bins and a
        # 	window of -0.3 to +0.7, the same as NIST uses
        im = build_intensity_matrix_i(data)

        self.update_pbar()

        # Show the m/z of the maximum and minimum bins
        print(" Minimum m/z bin: {}".format(im.get_min_mass()))
        print(" Maximum m/z bin: {}".format(im.get_max_mass()))

        # Crop masses
        min_mass, max_mass, *_ = method.mass_range

        if min_mass < im.get_min_mass():
            min_mass = im.get_min_mass()
        if max_mass > im.get_max_mass():
            max_mass = im.get_max_mass()
        im.crop_mass(min_mass, max_mass)

        self.update_pbar()

        # Perform Data filtering
        n_scan, n_mz = im.get_size()

        # Iterate over each IC in the intensity matrix
        for ii in range(n_mz):
            # print("\rWorking on IC#", ii+1, '  ',end='')
            ic = im.get_ic_at_index(ii)

            if method.enable_sav_gol:
                # Perform Savitzky-Golay smoothing.
                # Note that Turbomass does not use smoothing for qualitative method.
                ic = savitzky_golay(ic)

            if method.enable_tophat:
                # Perform Tophat baseline correction
                # Top-hat baseline Correction seems to bring down noise,
                #  		retaining shapes, but keeps points on actual peaks
                ic = tophat(ic, struct=method.tophat_struct)

            # Set the IC in the intensity matrix to the filtered one
            im.set_ic_at_index(ii, ic)

            self.update_pbar()

        # Peak Detection based on Biller and Biemann (1974), with a window
        # 	of <points>, and combining <scans> if they apex next to each other
        peak_list = BillerBiemann(im,
                                  points=method.bb_points,
                                  scans=method.bb_scans)

        self.update_pbar()

        print(" Number of peaks identified before filtering: {}".format(
            len(peak_list)))

        if method.enable_noise_filter:
            # Filtering peak lists with automatic noise filtering
            noise_level = window_analyzer(tic)
            # should we also do rel_threshold() here?
            # https://pymassspec.readthedocs.io/en/master/pyms/BillerBiemann.html#pyms.BillerBiemann.rel_threshold
            peak_list = num_ions_threshold(peak_list, method.noise_thresh,
                                           noise_level)

        self.update_pbar()

        filtered_peak_list = []

        for peak in peak_list:
            # Get mass and intensity lists for the mass spectrum at the apex of the peak
            apex_mass_list = peak.mass_spectrum.mass_list
            apex_mass_spec = peak.mass_spectrum.mass_spec

            # Determine the intensity of the base peak in the mass spectrum
            base_peak_intensity = max(apex_mass_spec)

            # Determine the index of the base peak in the mass spectrum
            base_peak_index = [
                index for index, intensity in enumerate(apex_mass_spec)
                if intensity == base_peak_intensity
            ][0]

            # Finally, determine the mass of the base peak
            base_peak_mass = apex_mass_list[base_peak_index]

            # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed
            if base_peak_mass in method.base_peak_filter:
                continue

            area = peak_sum_area(im, peak)
            peak.set_area(area)
            filtered_peak_list.append(peak)

            self.update_pbar()

        print(" Number of peaks identified: {}".format(
            len(filtered_peak_list)))

        # Create an experiment
        self.expr = Experiment(self.sample_name, filtered_peak_list)
        self.expr.sele_rt_range([
            "{}m".format(method.target_range[0]),
            "{}m".format(method.target_range[1])
        ])

        self.update_pbar()

        current_time = time_now()

        # The date and time the experiment was created
        self.properties["Date Created"] = current_time

        # The date and time the experiment was last modified
        self.properties["Date Modified"] = current_time

        if self.pbar:
            self.pbar.Update(self.pbar.Range)

        self.tic = tic
        self.filtered_peak_list = filtered_peak_list
コード例 #2
0
def import_processing(jcamp_file, spectrum_csv_file, report_csv_file, combined_csv_file, bb_points = 9, bb_scans = 2, noise_thresh = 2, target_range = (0,120), tophat_struct="1.5m", nistpath = "../MSSEARCH", base_peak_filter = ['73'], ExprDir = "."):		
	global nist_path
	nist_path = nistpath
	
	# Parameters
	base_peak_filter = [int(x) for x in base_peak_filter]
	target_range = tuple(target_range)
	sample_name = os.path.splitext(os.path.basename(jcamp_file))[0]
	number_of_peaks = 80
	
	data = JCAMP_reader(jcamp_file)
	
	# list of all retention times, in seconds
	times = data.get_time_list()
	# get Total Ion Chromatogram
	tic = data.get_tic() 
	# RT Range, time step, no. scans, min, max, mean and median m/z
	data.info()
	
	#data.write("output/data") # save output
	
	# Mass Binning	
	im = build_intensity_matrix_i(data) # covnert to intensity matrix
	#im.get_size() #number of scans, number of bins
	masses = im.get_mass_list() # list of mass bins
	
	print(" Minimum m/z bin: {}".format(im.get_min_mass()))
	print(" Maximum m/z bin: {}".format(im.get_max_mass()))
	
	# Write Binned Mass Spectra to OpenChrom-like CSV file
	ms = im.get_ms_at_index(0) # first mass spectrum
	spectrum_csv = open(spectrum_csv_file, 'w')
	spectrum_csv.write('RT(milliseconds);RT(minutes) - NOT USED BY IMPORT;RI;')
	spectrum_csv.write(';'.join(str(mz) for mz in ms.mass_list))
	spectrum_csv.write("\n")
		
	for scan in range(len(times)):
		spectrum_csv.write("{};{};{};".format(int(times[scan]*1000),rounders((times[scan]/60),"0.0000000000"),0))	
		ms = im.get_ms_at_index(scan)
		spectrum_csv.write(';'.join(str(intensity) for intensity in ms.mass_spec))
		spectrum_csv.write('\n')
	spectrum_csv.close()
	
	## Data filtering

	# Note that Turbomass does not use smoothing for qualitative method.	
	# Top-hat baseline Correction seems to bring down noise,
	#  retaning shapes, but keeps points on actual peaks
	
	#dump_object(im, "output/im.dump") # un-processed output

	n_scan, n_mz = im.get_size()
	for ii in range(n_mz):
		#print("\rWorking on IC#", ii+1, '  ',end='')
		ic = im.get_ic_at_index(ii)
		ic_smooth = savitzky_golay(ic)
		ic_bc = tophat(ic_smooth, struct=tophat_struct)
		im.set_ic_at_index(ii, ic_bc)

	#dump_object(im, "output/im-proc.dump") # processed output
		
	# Peak Detection based on Biller and Biemann, 1974, with a window
	#  of n points, and combining y scans if they apex next to each other
	peak_list = BillerBiemann(im, points=bb_points, scans=bb_scans) 
	
	print(" Number of peaks identified before filtering: {}".format(len(peak_list)))
	
	# Filtering peak lists with automatic noise filtering
	noise_level = window_analyzer(tic)
	peak_list = num_ions_threshold(peak_list, noise_thresh, noise_level)
	# why use 2 for number of ions above threshold?
	print(" Number of peaks identified: {}".format(len(peak_list)))

	# Peak Areas
	peak_area_list = []
	filtered_peak_list = []
	
	for peak in peak_list:
		apex_mass_list = peak.get_mass_spectrum().mass_list
		apex_mass_spec = peak.get_mass_spectrum().mass_spec
		base_peak_intensity = max(apex_mass_spec)
		base_peak_index = [index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity][0]
		base_peak_mass = apex_mass_list[base_peak_index]
		#print(base_peak_mass)
		if base_peak_mass in base_peak_filter:
			continue # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed
		
		area = peak_sum_area(im, peak)
		peak.set_area(area)
		peak_area_list.append(area)
		filtered_peak_list.append(peak)
	
	# Save the TIC and Peak List
	tic.write(os.path.join(ExprDir,"{}_tic.dat".format(sample_name)),formatting=False)
	store_peaks(filtered_peak_list,os.path.join(ExprDir,"{}_peaks.dat".format(sample_name)))
	
	# from https://stackoverflow.com/questions/16878715/how-to-find-the-index-of-n-largest-elements-in-a-list-or-np-array-python?lq=1
	top_peaks = sorted(range(len(peak_area_list)), key=lambda x: peak_area_list[x])
	
	# Write to turbomass-like CSV file
	report_csv = open(report_csv_file, "w")
	
	# Write to GunShotMatch Combine-like CSV file
	combine_csv = open(combined_csv_file, "w")
	
	combine_csv.write(sample_name)
	combine_csv.write("\n")
		
	report_csv.write("#;RT;Scan;Height;Area\n")
	combine_csv.write("Retention Time;Peak Area;;Lib;Match;R Match;Name;CAS Number;Scan\n")
	
	report_buffer = []
	
	for index in top_peaks:
		# Peak Number (1-80)
		peak_number = top_peaks.index(index)+1 
		# Retention time (minutes, 3dp)
		RT = rounders(filtered_peak_list[index].get_rt()/60,"0.000") 
		
		if not target_range[0] < RT <= target_range[1]:
			continue # skip the peak if it is outside the desired range
		
		# scan number, not that we really nead it as the peak object has the spectrum
		Scan = data.get_index_at_time(filtered_peak_list[index].get_rt())+1 
		# the binned mass spectrum
		filtered_peak_list[index].get_mass_spectrum() 
		# TIC intensity, as proxy for Peak height, which should be from baseline
		Height = '{:,}'.format(rounders(tic.get_intensity_at_index(data.get_index_at_time(filtered_peak_list[index].get_rt())),"0"))
		# Peak area, originally in "intensity seconds", so dividing by 60 to
		#  get "intensity minutes" like turbomass uses
		Area = '{:,}'.format(rounders(filtered_peak_list[index].get_area()/60,"0.0")) 
		
		#report_csv.write("{};{};{};{};{};{}\n".format(peak_number, RT, Scan, Height, Area,bounds))
		report_buffer.append([peak_number, RT, Scan, Height, Area])

	report_buffer = report_buffer[::-1] # Reverse list order

	# List of peaks already added to report
	existing_peaks = []

	filtered_report_buffer = []
	
	for row in report_buffer:
		filtered_report_buffer.append(row)
	
	filtered_report_buffer = filtered_report_buffer[:number_of_peaks]
	
	filtered_report_buffer.sort(key=operator.itemgetter(2))
	
	for row in filtered_report_buffer:
		index = filtered_report_buffer.index(row)
		report_csv.write(";".join([str(i) for i in row]))
		
		ms = im.get_ms_at_index(row[2]-1)
		
		create_msp("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec)
		matches_dict = nist_ms_comparison("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec)
		
		combine_csv.write("{};{};Page {} of 80;;;;;;{}\n".format(row[1],row[4],index+1,row[2]))
		
		for hit in range(1,6):
			report_csv.write(str(matches_dict["Hit{}".format(hit)]))
			report_csv.write(";")
			combine_csv.write(";;{};{};{};{};{};{};\n".format(hit,
					matches_dict["Hit{}".format(hit)]["Lib"],
					matches_dict["Hit{}".format(hit)]["MF"],
					matches_dict["Hit{}".format(hit)]["RMF"],
					matches_dict["Hit{}".format(hit)]["Name"],
					matches_dict["Hit{}".format(hit)]["CAS"],
					))

		report_csv.write("\n")
		
		time.sleep(2)
		
	report_csv.close()
	combine_csv.close()
	
	# Create an experiment
	expr = Experiment(sample_name, filtered_peak_list)
	expr.sele_rt_range(["{}m".format(target_range[0]),"{}m".format(target_range[1])])
	store_expr(os.path.join(ExprDir,"{}.expr".format(sample_name)), expr)
	
	return 0
コード例 #3
0
data = JCAMP_reader(jcamp_file)
im = build_intensity_matrix(data)

# ## Retention time range
#
# A basic operation on the GC-MS data is to select a specific time range for
# processing. In PyMassSpec, any data outside the chosen time range is discarded.
# The |trim()| method operates on the raw data, so any subsequent processing only
# refers to the trimmed data.
#
# The data can be trimmed to specific scans:

# In[3]:

data.trim(1000, 2000)
data.info()

# or specific retention times (in ``seconds`` or ``minutes``):

# In[4]:

data.trim("700s", "15m")
data.info()

# ## Mass Spectrum range and entries
#
# An |IntensityMatrix| object has a set mass range and interval that is derived
# from the data at the time of building the intensity matrix. The range of mass
# values can be cropped. This is done, primarily, to ensure that the range of
# masses used are consistent when comparing samples.
#
コード例 #4
0
	def quantitative_processing(self, jcamp_file, log_stdout=True):
		"""
		Import JCAMP-DX Files

		:param jcamp_file:
		:type jcamp_file:
		:param log_stdout:
		:type log_stdout:
		
		:return:
		:rtype:
		"""
		
		# Determine the name of the sample from the filename
		sample_name = os.path.splitext(os.path.basename(jcamp_file))[0]
		
		# Log Stdout to File
		if log_stdout:
			sys.stdout = open(os.path.join(self.config.log_dir, sample_name + ".log"), "w")
		
		# Load data using JCAMP_reader
		data = JCAMP_reader(jcamp_file)
		
		# list of all retention times, in seconds
		times = data.get_time_list()
		# get Total Ion Chromatogram
		tic = data.get_tic()
		# RT Range, time step, no. scans, min, max, mean and median m/z
		data.info()
		
		# Build "intensity matrix" by binning data with integer bins and a
		# 	window of -0.3 to +0.7, the same as NIST uses
		im = build_intensity_matrix_i(data)
		
		# Show the m/z of the maximum and minimum bins
		print(" Minimum m/z bin: {}".format(im.get_min_mass()))
		print(" Maximum m/z bin: {}".format(im.get_max_mass()))
		
		# Crop masses
		min_mass, max_mass, *_ = self.config.mass_range
		
		if min_mass < im.get_min_mass():
			min_mass = im.get_min_mass()
		if max_mass > im.get_max_mass():
			max_mass = im.get_max_mass()
		im.crop_mass(min_mass, max_mass)
		
		# Perform Data filtering
		n_scan, n_mz = im.get_size()
		
		# Iterate over each IC in the intensity matrix
		for ii in range(n_mz):
			# print("\rWorking on IC#", ii+1, '  ',end='')
			ic = im.get_ic_at_index(ii)
			
			# Perform Savitzky-Golay smoothing.
			# Note that Turbomass does not use smoothing for qualitative method.
			ic_smooth = savitzky_golay(ic)
			
			# Perform Tophat baseline correction
			# Top-hat baseline Correction seems to bring down noise,
			#  		retaining shapes, but keeps points on actual peaks
			ic_bc = tophat(ic_smooth, struct=self.config.tophat_struct)
			
			# Set the IC in the intensity matrix to the filtered one
			im.set_ic_at_index(ii, ic_bc)
		
		# Peak Detection based on Biller and Biemann (1974), with a window
		# 	of <points>, and combining <scans> if they apex next to each other
		peak_list = BillerBiemann(im, points=self.config.bb_points, scans=self.config.bb_scans)
		
		print(" Number of peaks identified before filtering: {}".format(len(peak_list)))
		
		# Filtering peak lists with automatic noise filtering
		noise_level = window_analyzer(tic)
		# should we also do rel_threshold() here?
		# https://pymassspec.readthedocs.io/en/master/pyms/BillerBiemann.html#pyms.BillerBiemann.rel_threshold
		peak_list = num_ions_threshold(peak_list, self.config.noise_thresh, noise_level)
		
		filtered_peak_list = []
		
		for peak in peak_list:
			# Get mass and intensity lists for the mass spectrum at the apex of the peak
			apex_mass_list = peak.mass_spectrum.mass_list
			apex_mass_spec = peak.mass_spectrum.mass_spec
			
			# Determine the intensity of the base peak in the mass spectrum
			base_peak_intensity = max(apex_mass_spec)
			
			# Determine the index of the base peak in the mass spectrum
			base_peak_index = [
				index for index, intensity in enumerate(apex_mass_spec)
				if intensity == base_peak_intensity][0]
			
			# Finally, determine the mass of the base peak
			base_peak_mass = apex_mass_list[base_peak_index]
			
			# skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed
			if base_peak_mass in self.config.base_peak_filter:
				continue
			
			area = peak_sum_area(im, peak)
			peak.set_area(area)
			filtered_peak_list.append(peak)
			
		print(" Number of peaks identified: {}".format(len(filtered_peak_list)))
		
		# Save the TIC and Peak List
		tic.write(os.path.join(self.config.expr_dir, "{}_tic.dat".format(sample_name)), formatting=False)
		store_peaks(filtered_peak_list, os.path.join(self.config.expr_dir, "{}_peaks.dat".format(sample_name)))
		
		# Create an experiment
		expr = Experiment(sample_name, filtered_peak_list)
		expr.sele_rt_range(["{}m".format(self.config.target_range[0]), "{}m".format(self.config.target_range[1])])
		store_expr(os.path.join(self.config.expr_dir, "{}.expr".format(sample_name)), expr)