def run(self): print("Quantitative Processing in Progress...") # TODO: Include data etc. in experiment file self.update_pbar() if self.filetype == ID_Format_jcamp: # Load data using JCAMP_reader from pyms.GCMS.IO.JCAMP import JCAMP_reader data = JCAMP_reader(self.properties["Original Filename"]) elif self.filetype == ID_Format_mzML: # Load data using JCAMP_reader from pyms.GCMS.IO.MZML import MZML_reader data = MZML_reader(self.properties["Original Filename"]) elif self.filetype == ID_Format_ANDI: # Load data using JCAMP_reader from pyms.GCMS.IO.ANDI import ANDI_reader data = ANDI_reader(self.properties["Original Filename"]) else: # Unknown Format return # TODO: Waters RAW, Thermo RAW, Agilent .d self.update_pbar() method = Method.Method(self.properties["Method"]) self.update_pbar() # list of all retention times, in seconds times = data.get_time_list() # get Total Ion Chromatogram tic = data.get_tic() # RT Range, time step, no. scans, min, max, mean and median m/z data.info() # Build "intensity matrix" by binning data with integer bins and a # window of -0.3 to +0.7, the same as NIST uses im = build_intensity_matrix_i(data) self.update_pbar() # Show the m/z of the maximum and minimum bins print(" Minimum m/z bin: {}".format(im.get_min_mass())) print(" Maximum m/z bin: {}".format(im.get_max_mass())) # Crop masses min_mass, max_mass, *_ = method.mass_range if min_mass < im.get_min_mass(): min_mass = im.get_min_mass() if max_mass > im.get_max_mass(): max_mass = im.get_max_mass() im.crop_mass(min_mass, max_mass) self.update_pbar() # Perform Data filtering n_scan, n_mz = im.get_size() # Iterate over each IC in the intensity matrix for ii in range(n_mz): # print("\rWorking on IC#", ii+1, ' ',end='') ic = im.get_ic_at_index(ii) if method.enable_sav_gol: # Perform Savitzky-Golay smoothing. # Note that Turbomass does not use smoothing for qualitative method. ic = savitzky_golay(ic) if method.enable_tophat: # Perform Tophat baseline correction # Top-hat baseline Correction seems to bring down noise, # retaining shapes, but keeps points on actual peaks ic = tophat(ic, struct=method.tophat_struct) # Set the IC in the intensity matrix to the filtered one im.set_ic_at_index(ii, ic) self.update_pbar() # Peak Detection based on Biller and Biemann (1974), with a window # of <points>, and combining <scans> if they apex next to each other peak_list = BillerBiemann(im, points=method.bb_points, scans=method.bb_scans) self.update_pbar() print(" Number of peaks identified before filtering: {}".format( len(peak_list))) if method.enable_noise_filter: # Filtering peak lists with automatic noise filtering noise_level = window_analyzer(tic) # should we also do rel_threshold() here? # https://pymassspec.readthedocs.io/en/master/pyms/BillerBiemann.html#pyms.BillerBiemann.rel_threshold peak_list = num_ions_threshold(peak_list, method.noise_thresh, noise_level) self.update_pbar() filtered_peak_list = [] for peak in peak_list: # Get mass and intensity lists for the mass spectrum at the apex of the peak apex_mass_list = peak.mass_spectrum.mass_list apex_mass_spec = peak.mass_spectrum.mass_spec # Determine the intensity of the base peak in the mass spectrum base_peak_intensity = max(apex_mass_spec) # Determine the index of the base peak in the mass spectrum base_peak_index = [ index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity ][0] # Finally, determine the mass of the base peak base_peak_mass = apex_mass_list[base_peak_index] # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed if base_peak_mass in method.base_peak_filter: continue area = peak_sum_area(im, peak) peak.set_area(area) filtered_peak_list.append(peak) self.update_pbar() print(" Number of peaks identified: {}".format( len(filtered_peak_list))) # Create an experiment self.expr = Experiment(self.sample_name, filtered_peak_list) self.expr.sele_rt_range([ "{}m".format(method.target_range[0]), "{}m".format(method.target_range[1]) ]) self.update_pbar() current_time = time_now() # The date and time the experiment was created self.properties["Date Created"] = current_time # The date and time the experiment was last modified self.properties["Date Modified"] = current_time if self.pbar: self.pbar.Update(self.pbar.Range) self.tic = tic self.filtered_peak_list = filtered_peak_list
def import_processing(jcamp_file, spectrum_csv_file, report_csv_file, combined_csv_file, bb_points = 9, bb_scans = 2, noise_thresh = 2, target_range = (0,120), tophat_struct="1.5m", nistpath = "../MSSEARCH", base_peak_filter = ['73'], ExprDir = "."): global nist_path nist_path = nistpath # Parameters base_peak_filter = [int(x) for x in base_peak_filter] target_range = tuple(target_range) sample_name = os.path.splitext(os.path.basename(jcamp_file))[0] number_of_peaks = 80 data = JCAMP_reader(jcamp_file) # list of all retention times, in seconds times = data.get_time_list() # get Total Ion Chromatogram tic = data.get_tic() # RT Range, time step, no. scans, min, max, mean and median m/z data.info() #data.write("output/data") # save output # Mass Binning im = build_intensity_matrix_i(data) # covnert to intensity matrix #im.get_size() #number of scans, number of bins masses = im.get_mass_list() # list of mass bins print(" Minimum m/z bin: {}".format(im.get_min_mass())) print(" Maximum m/z bin: {}".format(im.get_max_mass())) # Write Binned Mass Spectra to OpenChrom-like CSV file ms = im.get_ms_at_index(0) # first mass spectrum spectrum_csv = open(spectrum_csv_file, 'w') spectrum_csv.write('RT(milliseconds);RT(minutes) - NOT USED BY IMPORT;RI;') spectrum_csv.write(';'.join(str(mz) for mz in ms.mass_list)) spectrum_csv.write("\n") for scan in range(len(times)): spectrum_csv.write("{};{};{};".format(int(times[scan]*1000),rounders((times[scan]/60),"0.0000000000"),0)) ms = im.get_ms_at_index(scan) spectrum_csv.write(';'.join(str(intensity) for intensity in ms.mass_spec)) spectrum_csv.write('\n') spectrum_csv.close() ## Data filtering # Note that Turbomass does not use smoothing for qualitative method. # Top-hat baseline Correction seems to bring down noise, # retaning shapes, but keeps points on actual peaks #dump_object(im, "output/im.dump") # un-processed output n_scan, n_mz = im.get_size() for ii in range(n_mz): #print("\rWorking on IC#", ii+1, ' ',end='') ic = im.get_ic_at_index(ii) ic_smooth = savitzky_golay(ic) ic_bc = tophat(ic_smooth, struct=tophat_struct) im.set_ic_at_index(ii, ic_bc) #dump_object(im, "output/im-proc.dump") # processed output # Peak Detection based on Biller and Biemann, 1974, with a window # of n points, and combining y scans if they apex next to each other peak_list = BillerBiemann(im, points=bb_points, scans=bb_scans) print(" Number of peaks identified before filtering: {}".format(len(peak_list))) # Filtering peak lists with automatic noise filtering noise_level = window_analyzer(tic) peak_list = num_ions_threshold(peak_list, noise_thresh, noise_level) # why use 2 for number of ions above threshold? print(" Number of peaks identified: {}".format(len(peak_list))) # Peak Areas peak_area_list = [] filtered_peak_list = [] for peak in peak_list: apex_mass_list = peak.get_mass_spectrum().mass_list apex_mass_spec = peak.get_mass_spectrum().mass_spec base_peak_intensity = max(apex_mass_spec) base_peak_index = [index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity][0] base_peak_mass = apex_mass_list[base_peak_index] #print(base_peak_mass) if base_peak_mass in base_peak_filter: continue # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed area = peak_sum_area(im, peak) peak.set_area(area) peak_area_list.append(area) filtered_peak_list.append(peak) # Save the TIC and Peak List tic.write(os.path.join(ExprDir,"{}_tic.dat".format(sample_name)),formatting=False) store_peaks(filtered_peak_list,os.path.join(ExprDir,"{}_peaks.dat".format(sample_name))) # from https://stackoverflow.com/questions/16878715/how-to-find-the-index-of-n-largest-elements-in-a-list-or-np-array-python?lq=1 top_peaks = sorted(range(len(peak_area_list)), key=lambda x: peak_area_list[x]) # Write to turbomass-like CSV file report_csv = open(report_csv_file, "w") # Write to GunShotMatch Combine-like CSV file combine_csv = open(combined_csv_file, "w") combine_csv.write(sample_name) combine_csv.write("\n") report_csv.write("#;RT;Scan;Height;Area\n") combine_csv.write("Retention Time;Peak Area;;Lib;Match;R Match;Name;CAS Number;Scan\n") report_buffer = [] for index in top_peaks: # Peak Number (1-80) peak_number = top_peaks.index(index)+1 # Retention time (minutes, 3dp) RT = rounders(filtered_peak_list[index].get_rt()/60,"0.000") if not target_range[0] < RT <= target_range[1]: continue # skip the peak if it is outside the desired range # scan number, not that we really nead it as the peak object has the spectrum Scan = data.get_index_at_time(filtered_peak_list[index].get_rt())+1 # the binned mass spectrum filtered_peak_list[index].get_mass_spectrum() # TIC intensity, as proxy for Peak height, which should be from baseline Height = '{:,}'.format(rounders(tic.get_intensity_at_index(data.get_index_at_time(filtered_peak_list[index].get_rt())),"0")) # Peak area, originally in "intensity seconds", so dividing by 60 to # get "intensity minutes" like turbomass uses Area = '{:,}'.format(rounders(filtered_peak_list[index].get_area()/60,"0.0")) #report_csv.write("{};{};{};{};{};{}\n".format(peak_number, RT, Scan, Height, Area,bounds)) report_buffer.append([peak_number, RT, Scan, Height, Area]) report_buffer = report_buffer[::-1] # Reverse list order # List of peaks already added to report existing_peaks = [] filtered_report_buffer = [] for row in report_buffer: filtered_report_buffer.append(row) filtered_report_buffer = filtered_report_buffer[:number_of_peaks] filtered_report_buffer.sort(key=operator.itemgetter(2)) for row in filtered_report_buffer: index = filtered_report_buffer.index(row) report_csv.write(";".join([str(i) for i in row])) ms = im.get_ms_at_index(row[2]-1) create_msp("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec) matches_dict = nist_ms_comparison("{}_{}".format(sample_name,row[1]),ms.mass_list, ms.mass_spec) combine_csv.write("{};{};Page {} of 80;;;;;;{}\n".format(row[1],row[4],index+1,row[2])) for hit in range(1,6): report_csv.write(str(matches_dict["Hit{}".format(hit)])) report_csv.write(";") combine_csv.write(";;{};{};{};{};{};{};\n".format(hit, matches_dict["Hit{}".format(hit)]["Lib"], matches_dict["Hit{}".format(hit)]["MF"], matches_dict["Hit{}".format(hit)]["RMF"], matches_dict["Hit{}".format(hit)]["Name"], matches_dict["Hit{}".format(hit)]["CAS"], )) report_csv.write("\n") time.sleep(2) report_csv.close() combine_csv.close() # Create an experiment expr = Experiment(sample_name, filtered_peak_list) expr.sele_rt_range(["{}m".format(target_range[0]),"{}m".format(target_range[1])]) store_expr(os.path.join(ExprDir,"{}.expr".format(sample_name)), expr) return 0
data = JCAMP_reader(jcamp_file) im = build_intensity_matrix(data) # ## Retention time range # # A basic operation on the GC-MS data is to select a specific time range for # processing. In PyMassSpec, any data outside the chosen time range is discarded. # The |trim()| method operates on the raw data, so any subsequent processing only # refers to the trimmed data. # # The data can be trimmed to specific scans: # In[3]: data.trim(1000, 2000) data.info() # or specific retention times (in ``seconds`` or ``minutes``): # In[4]: data.trim("700s", "15m") data.info() # ## Mass Spectrum range and entries # # An |IntensityMatrix| object has a set mass range and interval that is derived # from the data at the time of building the intensity matrix. The range of mass # values can be cropped. This is done, primarily, to ensure that the range of # masses used are consistent when comparing samples. #
def quantitative_processing(self, jcamp_file, log_stdout=True): """ Import JCAMP-DX Files :param jcamp_file: :type jcamp_file: :param log_stdout: :type log_stdout: :return: :rtype: """ # Determine the name of the sample from the filename sample_name = os.path.splitext(os.path.basename(jcamp_file))[0] # Log Stdout to File if log_stdout: sys.stdout = open(os.path.join(self.config.log_dir, sample_name + ".log"), "w") # Load data using JCAMP_reader data = JCAMP_reader(jcamp_file) # list of all retention times, in seconds times = data.get_time_list() # get Total Ion Chromatogram tic = data.get_tic() # RT Range, time step, no. scans, min, max, mean and median m/z data.info() # Build "intensity matrix" by binning data with integer bins and a # window of -0.3 to +0.7, the same as NIST uses im = build_intensity_matrix_i(data) # Show the m/z of the maximum and minimum bins print(" Minimum m/z bin: {}".format(im.get_min_mass())) print(" Maximum m/z bin: {}".format(im.get_max_mass())) # Crop masses min_mass, max_mass, *_ = self.config.mass_range if min_mass < im.get_min_mass(): min_mass = im.get_min_mass() if max_mass > im.get_max_mass(): max_mass = im.get_max_mass() im.crop_mass(min_mass, max_mass) # Perform Data filtering n_scan, n_mz = im.get_size() # Iterate over each IC in the intensity matrix for ii in range(n_mz): # print("\rWorking on IC#", ii+1, ' ',end='') ic = im.get_ic_at_index(ii) # Perform Savitzky-Golay smoothing. # Note that Turbomass does not use smoothing for qualitative method. ic_smooth = savitzky_golay(ic) # Perform Tophat baseline correction # Top-hat baseline Correction seems to bring down noise, # retaining shapes, but keeps points on actual peaks ic_bc = tophat(ic_smooth, struct=self.config.tophat_struct) # Set the IC in the intensity matrix to the filtered one im.set_ic_at_index(ii, ic_bc) # Peak Detection based on Biller and Biemann (1974), with a window # of <points>, and combining <scans> if they apex next to each other peak_list = BillerBiemann(im, points=self.config.bb_points, scans=self.config.bb_scans) print(" Number of peaks identified before filtering: {}".format(len(peak_list))) # Filtering peak lists with automatic noise filtering noise_level = window_analyzer(tic) # should we also do rel_threshold() here? # https://pymassspec.readthedocs.io/en/master/pyms/BillerBiemann.html#pyms.BillerBiemann.rel_threshold peak_list = num_ions_threshold(peak_list, self.config.noise_thresh, noise_level) filtered_peak_list = [] for peak in peak_list: # Get mass and intensity lists for the mass spectrum at the apex of the peak apex_mass_list = peak.mass_spectrum.mass_list apex_mass_spec = peak.mass_spectrum.mass_spec # Determine the intensity of the base peak in the mass spectrum base_peak_intensity = max(apex_mass_spec) # Determine the index of the base peak in the mass spectrum base_peak_index = [ index for index, intensity in enumerate(apex_mass_spec) if intensity == base_peak_intensity][0] # Finally, determine the mass of the base peak base_peak_mass = apex_mass_list[base_peak_index] # skip the peak if the base peak is at e.g. m/z 73, i.e. septum bleed if base_peak_mass in self.config.base_peak_filter: continue area = peak_sum_area(im, peak) peak.set_area(area) filtered_peak_list.append(peak) print(" Number of peaks identified: {}".format(len(filtered_peak_list))) # Save the TIC and Peak List tic.write(os.path.join(self.config.expr_dir, "{}_tic.dat".format(sample_name)), formatting=False) store_peaks(filtered_peak_list, os.path.join(self.config.expr_dir, "{}_peaks.dat".format(sample_name))) # Create an experiment expr = Experiment(sample_name, filtered_peak_list) expr.sele_rt_range(["{}m".format(self.config.target_range[0]), "{}m".format(self.config.target_range[1])]) store_expr(os.path.join(self.config.expr_dir, "{}.expr".format(sample_name)), expr)