def redo_quality(block_path, dense_gt_path, minMemb, minSeg, sigMin, sigWeights, sigSmooth, edgeLengths=None, nodeFeatures=None, nodeSizes=None, nodeLabels=None, nodeNumStop=None, beta=0, metric='l1', wardness=0.2, out=None): #find all relevant folders in block path folder_list = [f for f in os.listdir(block_path) if not os.path.isfile(os.path.join(block_path,f)) and ("figure" not in f) and "redone" not in f] #create folder for redone quality outpath = block_path + "/redone_quality" if not os.path.exists(outpath): os.mkdir(outpath) dense_gt_data = read_h5(dense_gt_path) nodes_in_dgt = len(np.unique(dense_gt_data)) #use prob file in every folder to create new quality in data in corresponding new folder for f in folder_list: #find prob file paths folder_path = os.path.join(block_path, f) prob_file = [h for h in os.listdir(folder_path) if "probs" in h] prob_file_path = os.path.join(folder_path,prob_file[0]) #create new folders for new quality data config_name = prob_file_path.split("/")[-2] config_path = outpath +"/"+ config_name if not os.path.exists(config_path): os.mkdir(config_path) quality_data_path = config_path + "/" + config_name+".h5" #save new quality data in new folders save_quality_values(prob_file_path,gt_path, dense_gt_path, quality_data_path,slices,minMemb, minSeg, sigMin, sigWeights, sigSmooth, edgeLengths, nodeFeatures, nodeSizes, nodeLabels, nodeNumStop, beta, metric, wardness, out)
def test(ilp, files, gt_path, dense_gt_path, labels="", loops=3, weights="", repeats=1, outpath= "", t_cache = "", p_cache = ""): """ Run test :param: ilp : path to ilp project to use for training :param: files : path to file to do batch prediction on :param: gt_path : path to trimap groundtruth :param: dense_gt_path : path to dense groundtruth :param: labels : amount of labeled pixels to use in training :param: loops : amount of autocontext loops :param: weights : weighting of the labels over the autocontext loops :param: repeats : amount of repeat runs of the test :param: outpath : outpath for test outputs :param: t_cache : path to training data cache :param: p_cache : path to prediction data cache """ hostname = socket.gethostname() print "test information:" print print "hostname:", hostname print print "ilp_file:", ilp print print "files to predict:", files print print "groundtruth:", gt_path print print "dense groundtruth:", dense_gt_path print print "labels:", labels print print "loops:", loops print print "weights:", weights print print "repeats:", repeats # Collect the test specifications ilp_split = ilp.split(".")[-2] training_file = "training file: "+ilp_split.split("/")[-1] gt_split = gt_path.split(".")[-2] trimap_file = "trimap file: " + gt_split.split("/")[-1] # Assign paths filesplit = files.split(".")[-2] filename = filesplit.split("/")[-1] prediction_file = "prediction file: "+ filename test_folder_path = assign_path(hostname)[5] if t_cache == "": t_cache = test_folder_path + "/t_cache" if p_cache == "": p_cache = test_folder_path + "/p_cache/" + filename if not os.path.exists(p_cache): os.mkdir(p_cache) if outpath == "": output = test_folder_path + "/q_data" else: output = outpath print print "outpath:", outpath print print "t_cache:", t_cache print print "p_cache:", p_cache # Create file tags if labels == "": label_tag = "all" else: # assert labels == check_ilp_labels(ilp) true_labels = check_ilp_labels(ilp) label_tag = true_labels if weights == "": weight_tag = "none" else: weight_tag = str(weights) # Make folder for quality data if "manual" in ilp: filename += "_manual" if "hand_drawn" in ilp: filename += "_hand_drawn" if "clever" in ilp: filename += "_clever" if "less_feat" in ilp: filename += "_less_feat" #change labels for every test # if labels != "": # print # print "reducing labels to " + str(labels) # ilp = reduce_labels_in_ilp(ilp, labels) file_dir = output + "/" + filename if not os.path.exists(file_dir): os.mkdir(file_dir) # Overwrite folder directory # file_dir = "/mnt/CLAWS1/stamilev/delme" # Check if file directory exists, if not make such directory if not os.path.exists(file_dir): print print "Output folder did not exist." os.mkdir(file_dir) print print "New one named " + file_dir + " was created." q_outpath = file_dir + "/n_" + str(loops) + "_l_" + str(label_tag) + "_w_" + weight_tag prob_folder = q_outpath + "/prob_files" q_data_outpath = q_outpath + "/n_" + str(loops) + "_l_" + str(label_tag) + "_w_" + weight_tag + ".h5" # Check if test directory exists, if not make such directory if not os.path.exists(q_outpath): print print "Output h5 file did not exist" os.mkdir(q_outpath) os.mkdir(prob_folder) print print "New one named " + q_outpath + " was created." if not os.path.exists(prob_folder): os.mkdir(prob_folder) # Run the test for i in range(repeats): print print "round of repeats %d of %d" % (i+1, repeats) #train on ilp project ac_train(ilp, labels, loops, weights, t_cache, outpath) print print "training completed" #batch predict files ac_batch_predict(files, t_cache, p_cache, overwrite = "") print print "batch prediction completed" #save prob files and quality data prob_file = [x for x in os.listdir(p_cache) if ("probs" in x)] predict_path = p_cache + "/" + prob_file[0] predict_data = adjust_predict(read_h5(predict_path)) prob_path = prob_folder + "/prob_"+ str(i+1)+ ".h5" # if os.path.exists(prob_path): # # TODO:not working yet # prob_path = prob_path.split("/")[-2] + "/new_" + prob_path.split("/")[-1] # print prob_path save_h5(predict_data, prob_path, "data") save_quality_values(predict_path, gt_path, dense_gt_path, q_data_outpath, (0,49,99)) #save test specification data save_h5([training_file, prediction_file, trimap_file], q_data_outpath, "used files", None) save_h5([labels],q_data_outpath, "autocontext_parameters/#labels") save_h5([loops], q_data_outpath, "autocontext_parameters/#loops") save_h5([str(weight_tag)], q_data_outpath, "autocontext_parameters/weights") print print "quality data saved" #save configuration data # call(["cp", predict_path, q_outpath]) save_h5(["pmin", "minMemb", "minSeg", "sigMin", "sigWeights", "sigSmooth", "cleanCloseSeeds", "returnSeedsOnly"], q_data_outpath, "segmentation/wsDt parameters", None) save_h5(["edge_weights", "edgeLengths", "nodeFeatures", "nodeSizes", "nodeLabels", "nodeNumStop", "beta", "metric", "wardness", "out"], q_data_outpath, "segmentation/agglCl parameters", None) print print "quality data saved"