def test_against_unquantized(self): kernel_size = 3 test_input = torch.randn(16, _NUM_IN_CHANNELS, 32, 32, 32).cuda() torch.manual_seed(1234) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1234) fake_quant_conv3d = quant_conv.QuantConvTranspose3d( _NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=True, quant_desc_input=QuantDescriptor(num_bits=16), quant_desc_weight=QuantDescriptor(num_bits=16, axis=(1))) # Reset seed. Make sure weight and bias are the same torch.manual_seed(1234) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1234) conv3d = nn.ConvTranspose3d(_NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=True) fake_quant_output = fake_quant_conv3d(test_input) output = conv3d(test_input) test_utils.compare(fake_quant_output, output, rtol=1e-5, atol=2e-4)
def test_fake_quant_per_channel_other_prec(self): kernel_size = 3 quant_desc_input = QuantDescriptor(num_bits=4) quant_desc_weight = QuantDescriptor(num_bits=3, axis=(1)) quant_conv_object = quant_conv.QuantConvTranspose3d( _NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=False, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) test_input = torch.randn(16, _NUM_IN_CHANNELS, 16, 16, 16) test_input_quantizer = TensorQuantizer(quant_desc_input) weight_quantizer = TensorQuantizer(quant_desc_weight) quant_input = test_input_quantizer(test_input) weight_copy = quant_conv_object.weight.clone() quant_weight = weight_quantizer(weight_copy) out1 = F.conv_transpose3d(quant_input, quant_weight) out2 = quant_conv_object(test_input) np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
def test_fake_quant_per_channel_bias(self): kernel_size = 3 quant_conv_object = quant_conv.QuantConvTranspose3d( _NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=True, quant_desc_weight=tensor_quant. QUANT_DESC_8BIT_CONVTRANSPOSE3D_WEIGHT_PER_CHANNEL) test_input = torch.randn(2, _NUM_IN_CHANNELS, 2, 2, 2) quant_input = tensor_quant.fake_tensor_quant( test_input, torch.max(torch.abs(test_input))) weight_copy = quant_conv_object.weight.clone() amax = quant_utils.reduce_amax(weight_copy, axis=(0, 2, 3, 4)) quant_weight = tensor_quant.fake_tensor_quant(weight_copy, amax) out1 = F.conv_transpose3d(quant_input, quant_weight, bias=quant_conv_object.bias) out2 = quant_conv_object(test_input) np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
def test_no_quant(self): kernel_size = 3 quant_conv_object = quant_conv.QuantConvTranspose3d( _NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=False) quant_conv_object.input_quantizer.disable() quant_conv_object.weight_quantizer.disable() test_input = torch.randn(16, _NUM_IN_CHANNELS, 32, 32, 32) weight_copy = quant_conv_object.weight.clone() quant_weight = weight_copy out1 = F.conv_transpose3d(test_input, quant_weight) out2 = quant_conv_object(test_input) np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())