def test_against_unquantized(self):
        kernel_size = 3
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 32, 32, 32).cuda()

        torch.manual_seed(1234)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(1234)
        fake_quant_conv3d = quant_conv.QuantConvTranspose3d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=True,
            quant_desc_input=QuantDescriptor(num_bits=16),
            quant_desc_weight=QuantDescriptor(num_bits=16, axis=(1)))

        # Reset seed. Make sure weight and bias are the same
        torch.manual_seed(1234)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(1234)
        conv3d = nn.ConvTranspose3d(_NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=True)

        fake_quant_output = fake_quant_conv3d(test_input)
        output = conv3d(test_input)

        test_utils.compare(fake_quant_output, output, rtol=1e-5, atol=2e-4)
    def test_fake_quant_per_channel_other_prec(self):
        kernel_size = 3

        quant_desc_input = QuantDescriptor(num_bits=4)
        quant_desc_weight = QuantDescriptor(num_bits=3, axis=(1))

        quant_conv_object = quant_conv.QuantConvTranspose3d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False,
            quant_desc_input=quant_desc_input,
            quant_desc_weight=quant_desc_weight)
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 16, 16, 16)

        test_input_quantizer = TensorQuantizer(quant_desc_input)
        weight_quantizer = TensorQuantizer(quant_desc_weight)

        quant_input = test_input_quantizer(test_input)

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = weight_quantizer(weight_copy)

        out1 = F.conv_transpose3d(quant_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
예제 #3
0
    def test_fake_quant_per_channel_bias(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConvTranspose3d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=True,
            quant_desc_weight=tensor_quant.
            QUANT_DESC_8BIT_CONVTRANSPOSE3D_WEIGHT_PER_CHANNEL)
        test_input = torch.randn(2, _NUM_IN_CHANNELS, 2, 2, 2)

        quant_input = tensor_quant.fake_tensor_quant(
            test_input, torch.max(torch.abs(test_input)))

        weight_copy = quant_conv_object.weight.clone()
        amax = quant_utils.reduce_amax(weight_copy, axis=(0, 2, 3, 4))
        quant_weight = tensor_quant.fake_tensor_quant(weight_copy, amax)

        out1 = F.conv_transpose3d(quant_input,
                                  quant_weight,
                                  bias=quant_conv_object.bias)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(),
                                      out2.detach().cpu().numpy())
    def test_no_quant(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConvTranspose3d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False)
        quant_conv_object.input_quantizer.disable()
        quant_conv_object.weight_quantizer.disable()
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 32, 32, 32)

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = weight_copy

        out1 = F.conv_transpose3d(test_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())