コード例 #1
0
    def test_trotterization(self):

        circ_vec = [Circuit(), build_circuit('Z_0')]
        coef_vec = [-1.0j * 0.5, -1.0j * -0.04544288414432624]

        # the operator to be exponentiated
        minus_iH = QubitOperator()
        for i in range(len(circ_vec)):
            minus_iH.add(coef_vec[i], circ_vec[i])

        # exponentiate the operator
        Utrot, phase = trotterization.trotterize(minus_iH)

        inital_state = np.zeros(2**4, dtype=complex)
        inital_state[3] = np.sqrt(2 / 3)
        inital_state[12] = -np.sqrt(1 / 3)

        # initalize a quantum computer with above coeficients
        # i.e. ca|1100> + cb|0011>
        qc = Computer(4)
        qc.set_coeff_vec(inital_state)

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)
        qc.apply_constant(phase)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert np.real(coeffs[3]) == approx(0.6980209737879599, abs=1.0e-15)
        assert np.imag(coeffs[3]) == approx(-0.423595782342996, abs=1.0e-15)
        assert np.real(coeffs[12]) == approx(-0.5187235657531178, abs=1.0e-15)
        assert np.imag(coeffs[12]) == approx(0.25349397560041553, abs=1.0e-15)
コード例 #2
0
ファイル: test_qft.py プロジェクト: JonathonMisiewicz/qforte
    def test_qft(self):
        trial_state = Computer(4)
        trial_circ = build_circuit('X_0 X_1')
        trial_state.apply_circuit(trial_circ)

        # verify direct transformation
        qft(trial_state, 0, 3)

        a1_dag_a2 = build_operator('1.0, Z_0')
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(0, abs=1.0e-16)

        # test unitarity
        qft(trial_state, 0, 2)
        rev_qft(trial_state, 0, 2)

        a1_dag_a2 = build_operator('1.0, Z_0')
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(0, abs=1.0e-16)

        # test reverse transformation
        qft(trial_state, 0, 3)

        a1_dag_a2 = build_operator('1.0, Z_0')
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(1.0, abs=1.0e-14)
コード例 #3
0
    def test_trotterization_with_controlled_U(self):

        circ_vec = [build_circuit('Y_0 X_1'), build_circuit('X_0 Y_1')]
        coef_vec = [-1.0719145972781818j, 1.0719145972781818j]

        # the operator to be exponentiated
        minus_iH = QubitOperator()
        for i in range(len(circ_vec)):
            minus_iH.add(coef_vec[i], circ_vec[i])

        ancilla_idx = 2

        # exponentiate the operator
        Utrot, phase = trotterization.trotterize_w_cRz(minus_iH, ancilla_idx)

        # Case 1: positive control

        # initalize a quantum computer
        qc = Computer(3)

        # build HF state
        qc.apply_gate(gate('X', 0, 0))

        # put ancilla in |1> state
        qc.apply_gate(gate('X', 2, 2))

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert coeffs[5] == approx(-0.5421829373021542, abs=1.0e-15)
        assert coeffs[6] == approx(-0.8402604730072732, abs=1.0e-15)

        # Case 2: negitive control

        # initalize a quantum computer
        qc = Computer(3)

        # build HF state
        qc.apply_gate(gate('X', 0, 0))

        # apply the troterized minus_iH
        qc.apply_circuit(Utrot)

        smart_print(qc)

        coeffs = qc.get_coeff_vec()

        assert coeffs[1] == approx(1, abs=1.0e-15)
コード例 #4
0
    def test_op_exp_val_1(self):
        # test direct expectation value measurement
        trial_state = Computer(4)

        trial_prep = [None] * 5
        trial_prep[0] = gate('H', 0, 0)
        trial_prep[1] = gate('H', 1, 1)
        trial_prep[2] = gate('H', 2, 2)
        trial_prep[3] = gate('H', 3, 3)
        trial_prep[4] = gate('cX', 0, 1)

        trial_circ = Circuit()

        #prepare the circuit
        for gate_ in trial_prep:
            trial_circ.add(gate_)

        # use circuit to prepare trial state
        trial_state.apply_circuit(trial_circ)

        # gates needed for [a1^ a2] operator
        X1 = gate('X', 1, 1)
        X2 = gate('X', 2, 2)
        Y1 = gate('Y', 1, 1)
        Y2 = gate('Y', 2, 2)

        # initialize circuits to make operator
        circ1 = Circuit()
        circ1.add(X2)
        circ1.add(Y1)
        circ2 = Circuit()
        circ2.add(Y2)
        circ2.add(Y1)
        circ3 = Circuit()
        circ3.add(X2)
        circ3.add(X1)
        circ4 = Circuit()
        circ4.add(Y2)
        circ4.add(X1)

        #build the quantum operator for [a1^ a2]
        a1_dag_a2 = QubitOperator()
        a1_dag_a2.add(0.0 - 0.25j, circ1)
        a1_dag_a2.add(0.25, circ2)
        a1_dag_a2.add(0.25, circ3)
        a1_dag_a2.add(0.0 + 0.25j, circ4)

        #get direct expectatoin value
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(0.25, abs=2.0e-16)
コード例 #5
0
    def test_io_simplified(self):
        # test direct expectation value measurement
        trial_state = Computer(4)
        trial_circ = build_circuit('H_0 H_1 H_2 H_3 cX_0_1')

        # use circuit to prepare trial state
        trial_state.apply_circuit(trial_circ)

        #build the quantum operator for [a1^ a2]
        a1_dag_a2 = build_operator('0.0-0.25j, X_2 Y_1; 0.25, Y_2 Y_1; \
        0.25, X_2 X_1; 0.0+0.25j, Y_2 X_1')

        #get direct expectatoin value
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(0.25, abs=2.0e-16)
コード例 #6
0
    def test_circuit(self):
        print('\n')
        num_qubits = 10

        qc1 = Computer(num_qubits)
        qc2 = Computer(num_qubits)

        prep_circ = Circuit()
        circ = Circuit()

        for i in range(num_qubits):
            prep_circ.add(gate('H', i, i))

        for i in range(num_qubits):
            prep_circ.add(gate('cR', i, i + 1, 1.116 / (i + 1.0)))

        for i in range(num_qubits - 1):
            circ.add(gate('cX', i, i + 1))
            circ.add(gate('cX', i + 1, i))
            circ.add(gate('cY', i, i + 1))
            circ.add(gate('cY', i + 1, i))
            circ.add(gate('cZ', i, i + 1))
            circ.add(gate('cZ', i + 1, i))
            circ.add(gate('cR', i, i + 1, 3.14159 / (i + 1.0)))
            circ.add(gate('cR', i + 1, i, 2.17284 / (i + 1.0)))

        qc1.apply_circuit_safe(prep_circ)
        qc2.apply_circuit_safe(prep_circ)

        qc1.apply_circuit_safe(circ)
        qc2.apply_circuit(circ)

        C1 = qc1.get_coeff_vec()
        C2 = qc2.get_coeff_vec()

        diff_vec = [(C1[i] - C2[i]) * np.conj(C1[i] - C2[i])
                    for i in range(len(C1))]
        diff_norm = np.sum(diff_vec)

        print('\nNorm of diff vec |C - Csafe|')
        print('-----------------------------')
        print('   ', diff_norm)
        assert diff_norm == approx(0, abs=1.0e-16)
コード例 #7
0
    def test_advanced_gates(self):
        print('\n')
        trial_state = Computer(4)
        trial_circ = build_circuit('X_0 X_1')
        trial_state.apply_circuit(trial_circ)

        # verify Toffoli gate
        T_circ = Toffoli(0, 1, 2)
        print(T_circ.str())
        trial_state.apply_circuit(T_circ)  # This should turn the state to 1110
        a1_dag_a2 = build_operator('1.0, Z_2')
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(-1, abs=9e-16)  # Measure qubit 2 should give -1

        # verify Fredkin gate
        F_circ = Fredkin(1, 2, 3)
        print(F_circ.str())
        trial_state.apply_circuit(F_circ)  # This should turn the state to 1101
        # trial_state.apply_circuit_safe(F_circ) # This should turn the state to 1101
        a1_dag_a2 = build_operator('1.0, Z_2')
        exp = trial_state.direct_op_exp_val(a1_dag_a2)
        assert exp == approx(1, abs=9e-16)  # Measure qubit 2 should give +1