def circuit_tester(prep, test_circ): for gate in test_circ.gates(): id = gate.gate_id() target = gate.target() control = gate.control() num_qubits = 5 qc1 = Computer(num_qubits) qc2 = Computer(num_qubits) qc1.apply_circuit_safe(prep) qc2.apply_circuit_safe(prep) qc1.apply_gate_safe(gate) qc2.apply_gate(gate) C1 = qc1.get_coeff_vec() C2 = qc2.get_coeff_vec() diff_vec = [(C1[i] - C2[i]) * np.conj(C1[i] - C2[i]) for i in range(len(C1))] diff_norm = np.sum(diff_vec) if (np.sum(diff_vec) != (0.0 + 0.0j)): print('|C - C_safe|F^2 control target id') print('----------------------------------------') print(diff_norm, ' ', control, ' ', target, ' ', id) return diff_norm
def test_cX_gate(self): # test the cX/CNOT gate nqubits = 2 basis0 = make_basis('00') # basis0:|00> basis1 = make_basis('01') # basis1:|10> basis2 = make_basis('10') # basis2:|01> basis3 = make_basis('11') # basis3:|11> computer = Computer(nqubits) CNOT = gate('CNOT', 0, 1) # test CNOT|00> = |00> computer.set_state([(basis0, 1.0)]) computer.apply_gate(CNOT) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(1.0, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16) # test CNOT|10> = |11> computer.set_state([(basis1, 1.0)]) computer.apply_gate(CNOT) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3 == approx(1, abs=1.0e-16) # test CNOT|01> = |01> computer.set_state([(basis2, 1.0)]) computer.apply_gate(CNOT) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(1, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16) # test CNOT|11> = |10> computer.set_state([(basis3, 1.0)]) computer.apply_gate(CNOT) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(1, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16) with pytest.raises(ValueError): gate('CNOT', 0, 1.0)
def test_cY_gate(self): # test the cY gate nqubits = 2 basis0 = make_basis('00') # basis0:|00> basis1 = make_basis('01') # basis1:|10> basis2 = make_basis('10') # basis2:|01> basis3 = make_basis('11') # basis3:|11> computer = Computer(nqubits) cY = gate('cY', 0, 1) # test cY|00> = |00> computer.set_state([(basis0, 1.0)]) computer.apply_gate(cY) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(1, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16) # test cY|01> = |01> computer.set_state([(basis2, 1.0)]) computer.apply_gate(cY) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(1, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16) # test cY|10> = i|11> computer.set_state([(basis1, 1.0)]) computer.apply_gate(cY) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3.imag == approx(1, abs=1.0e-16) # test cY|11> = -i|10> computer.set_state([(basis3, 1.0)]) computer.apply_gate(cY) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) coeff2 = computer.coeff(basis2) coeff3 = computer.coeff(basis3) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1.imag == approx(-1.0, abs=1.0e-16) assert coeff2 == approx(0, abs=1.0e-16) assert coeff3 == approx(0, abs=1.0e-16)
def test_Z_gate(self): # test the Pauli Y gate nqubits = 1 basis0 = make_basis('0') basis1 = make_basis('1') computer = Computer(nqubits) Z = gate('Z', 0, 0) # test Z|0> = |0> computer.apply_gate(Z) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0 == approx(1, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16) # test Z|1> = -|1> computer.set_state([(basis1, 1.0)]) computer.apply_gate(Z) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(-1.0, abs=1.0e-16)
def test_Y_gate(self): # test the Pauli Y gate nqubits = 1 basis0 = make_basis('0') basis1 = make_basis('1') computer = Computer(nqubits) Y = gate('Y', 0, 0) # test Y|0> = i|1> computer.apply_gate(Y) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1.imag == approx(1.0, abs=1.0 - 16) # test Y|1> = -i|0> computer.set_state([(basis1, 1.0)]) computer.apply_gate(Y) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0.imag == approx(-1, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16)
def test_X_gate(self): # test the Pauli X gate nqubits = 1 basis0 = make_basis('0') basis1 = make_basis('1') computer = Computer(nqubits) X = gate('X', 0) # test X|0> = |1> computer.apply_gate(X) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0 == approx(0, abs=1.0e-16) assert coeff1 == approx(1, abs=1.0e-16) # test X|1> = |0> computer.set_state([(basis1, 1.0)]) computer.apply_gate(X) coeff0 = computer.coeff(basis0) coeff1 = computer.coeff(basis1) assert coeff0 == approx(1, abs=1.0e-16) assert coeff1 == approx(0, abs=1.0e-16)
def test_computer(self): print('\n') # test that 1 - 1 = 0 # print('\n'.join(qc.str())) X = gate('X', 0, 0) print(X) Y = gate('Y', 0, 0) print(Y) Z = gate('Z', 0, 0) print(Z) H = gate('H', 0, 0) print(H) R = gate('R', 0, 0, 0.1) print(R) S = gate('S', 0, 0) print(S) T = gate('T', 0, 0) print(T) cX = gate('cX', 0, 1) print(cX) cY = gate('cY', 0, 1) print(cY) cZ = gate('cZ', 0, 1) print(cZ) # qcircuit = Circuit() # qcircuit.add(qg) # qcircuit.add(Gate(GateType.Hgate,1,1)); # print('\n'.join(qcircuit.str())) # self.assertEqual(subtract(1, 1), 0) computer = Computer(16) # print(repr(computer)) # circuit = Circuit() # circuit.add(X) for i in range(3000): computer.apply_gate(X) computer.apply_gate(Y) computer.apply_gate(Z) computer.apply_gate(H)
def test_trotterization_with_controlled_U(self): circ_vec = [build_circuit('Y_0 X_1'), build_circuit('X_0 Y_1')] coef_vec = [-1.0719145972781818j, 1.0719145972781818j] # the operator to be exponentiated minus_iH = QubitOperator() for i in range(len(circ_vec)): minus_iH.add(coef_vec[i], circ_vec[i]) ancilla_idx = 2 # exponentiate the operator Utrot, phase = trotterization.trotterize_w_cRz(minus_iH, ancilla_idx) # Case 1: positive control # initalize a quantum computer qc = Computer(3) # build HF state qc.apply_gate(gate('X', 0, 0)) # put ancilla in |1> state qc.apply_gate(gate('X', 2, 2)) # apply the troterized minus_iH qc.apply_circuit(Utrot) smart_print(qc) coeffs = qc.get_coeff_vec() assert coeffs[5] == approx(-0.5421829373021542, abs=1.0e-15) assert coeffs[6] == approx(-0.8402604730072732, abs=1.0e-15) # Case 2: negitive control # initalize a quantum computer qc = Computer(3) # build HF state qc.apply_gate(gate('X', 0, 0)) # apply the troterized minus_iH qc.apply_circuit(Utrot) smart_print(qc) coeffs = qc.get_coeff_vec() assert coeffs[1] == approx(1, abs=1.0e-15)