コード例 #1
0
ファイル: Connector.py プロジェクト: yiiwood/quagga
    def register_usage(self, fu_device_id, bo_device_id=None):
        """
        Register usage of connector's forward_matrix.

        :param fu_device_id: context in which `forward_matrix` will be used
        :param bo_device_id: context in which `backward_matrix`
                                    of the connector will be calculated
        """

        if not self.bpropagable and bo_device_id:
            raise ValueError(
                "Nobody is going to use computation from backward step. "
                "You mustn't register for backward propagate!")
        if fu_device_id != self._fo_device_id and fu_device_id not in self._f_matrices:
            self._f_matrices[fu_device_id] = Matrix.empty_like(
                self, fu_device_id)
            self.context[fu_device_id] = Context(fu_device_id)
        if bo_device_id is None:
            return self._f_matrices[fu_device_id]

        for device_id in [self._bu_device_id, bo_device_id]:
            if device_id not in self._b_matrices:
                self._b_matrices[device_id] = Matrix.empty_like(
                    self, device_id)
                if device_id not in self.context:
                    self.context[device_id] = Context(device_id)
        if self._bu_device_id != bo_device_id and self._bu_device_id not in self._b_matrices_pool:
            self._b_matrices_pool[self._bu_device_id] = Matrix.empty_like(
                self, self._bu_device_id)
        return self._f_matrices[fu_device_id], self._b_matrices[bo_device_id]
コード例 #2
0
    def test_bprop(self):
        """
        compare `bprop` results for cpu and gpu backends
        """
        r = []
        for i in xrange(self.N):
            batch_size, dim = self.rng.random_integers(2000, size=2)
            y_hat = self.rng.randn(batch_size, dim).astype(dtype=np.float32)
            y = self.rng.randn(batch_size, dim).astype(dtype=np.float32)

            quagga.processor_type = 'gpu'
            context = Context()
            y_hat_gpu = Connector(Matrix.from_npa(y_hat), context, context)
            y_gpu = Connector(Matrix.from_npa(y))
            sse_block = SseBlock(y_hat_gpu, y_gpu)
            sse_block.fprop()
            sse_block.bprop()
            dL_dy_hat_gpu = y_hat_gpu.backward_matrix.to_host()

            quagga.processor_type = 'cpu'
            context = Context()
            y_hat_cpu = Connector(Matrix.from_npa(y_hat), context, context)
            y_cpu = Connector(Matrix.from_npa(y))
            sse_block = SseBlock(y_hat_cpu, y_cpu)
            sse_block.fprop()
            sse_block.bprop()
            dL_dy_hat_cpu = y_hat_cpu.backward_matrix.to_host()

            r.append(np.allclose(dL_dy_hat_gpu, dL_dy_hat_cpu))

        self.assertEqual(sum(r), self.N)
コード例 #3
0
ファイル: NonlinearityBlock.py プロジェクト: yiiwood/quagga
    def __init__(self, x, nonlinearity, device_id=None):
        """


        """
        self.f_context = Context(device_id)
        device_id = self.f_context.device_id
        self.learning = x.bpropagable
        if self.learning:
            self.b_context = Context(device_id)
            self.x, self.dL_dx = x.register_usage(device_id, device_id)
            self._df_dpref = Matrix.empty_like(self.x, device_id)
        else:
            self.x = x.register_usage(device_id)
        output = Matrix.empty_like(x, device_id)
        self.output = Connector(output, device_id if self.learning else None)
        if nonlinearity == 'sigmoid':
            self.f = self.x.sigmoid
        elif nonlinearity == 'tanh':
            self.f = self.x.tanh
        elif nonlinearity == 'relu':
            self.f = self.x.relu
        elif nonlinearity == 'softmax':
            raise ValueError('For softmax nonlinearity use SoftmaxBlock!')
        else:
            raise ValueError('TODO!')
        self.training_mode = True
コード例 #4
0
 def __init__(self, data, char_to_idx, batch_size, x_device_id,
              y_device_id):
     self.data = HomogeneousDataIterator(data, char_to_idx, batch_size,
                                         True, True)
     self.data_iterator = iter(self.data)
     self.x_context = Context(x_device_id)
     self.y_context = Context(y_device_id)
     max_len = 0
     for sub_line in data:
         cur_len = len(sub_line)
         if cur_len > max_len:
             max_len = cur_len
     print max_len
     self.x = Connector(
         Matrix.empty(batch_size, max_len - 1, 'int', x_device_id))
     self._y = Matrix.empty(batch_size, max_len - 1, 'int', y_device_id)
     self.y = List([Connector(self._y[:, i]) for i in xrange(max_len - 1)],
                   self.x.ncols)
     self.lengths = Matrix.empty(self.x.nrows, 1, 'int', x_device_id)
     self._mask = Matrix.empty(self.x.nrows, self.x.ncols, 'float',
                               x_device_id)
     self.mask = List(
         [Connector(self._mask[:, i]) for i in xrange(max_len)],
         self.x.ncols)
     self.blocking_contexts = None
コード例 #5
0
    def __init__(self, W, b, x, device_id=None):
        self.f_context = Context(device_id)
        device_id = self.f_context.device_id

        if W.bpropagable:
            self.W, self.dL_dW = W.register_usage(device_id, device_id)
        else:
            self.W = W.register_usage(device_id)
        if b:
            if b.bpropagable:
                self.b, self.dL_db = b.register_usage(device_id, device_id)
                self.ones = Matrix.empty(x.nrows, 1, self.b.dtype, device_id)
                self.ones.sync_fill(1.0)
            else:
                self.b = b.register_usage(device_id)
        if x.bpropagable:
            self.x, self.dL_dx = x.register_usage(device_id, device_id)
        else:
            self.x = x.register_usage(device_id)

        output = Matrix.empty(x.nrows, self.W.ncols, device_id=device_id)
        self.learning = hasattr(self, 'dL_dW') or hasattr(self, 'dL_db') or \
                        hasattr(self, 'dL_dx')
        if self.learning:
            self.b_context = Context(device_id)
            self.output = Connector(output, device_id)
        else:
            self.output = Connector(output)
コード例 #6
0
    def test_bprop(self):
        """
        compare `bprop` results for cpu and gpu backends
        """
        r = []
        for i in xrange(self.N):
            max_input_sequence_len = self.rng.random_integers(500)
            sequence_len = max_input_sequence_len if i == 0 else self.rng.random_integers(
                max_input_sequence_len)
            batch_size = self.rng.random_integers(512)
            dim = self.rng.random_integers(1500)
            x = [
                self.rng.rand(batch_size, dim).astype(dtype=np.float32)
                for _ in xrange(max_input_sequence_len)
            ]

            state = self.rng.get_state()
            quagga.processor_type = 'gpu'
            context = Context()
            x_gpu = List(
                [Connector(Matrix.from_npa(e), context, context) for e in x])
            smean_pooling_block_gpu = SequentialMeanPoolingBlock(x_gpu)
            x_gpu.set_length(sequence_len)
            _, dL_doutput = smean_pooling_block_gpu.output.register_usage(
                context, context)
            smean_pooling_block_gpu.fprop()
            random_matrix = self.rng.rand(dL_doutput.nrows, dL_doutput.ncols)
            Matrix.from_npa(random_matrix,
                            'float').copy_to(context, dL_doutput)
            smean_pooling_block_gpu.bprop()
            dL_dmatrices_gpu = [e.backward_matrix.to_host() for e in x_gpu]

            self.rng.set_state(state)
            quagga.processor_type = 'cpu'
            context = Context()
            x_cpu = List(
                [Connector(Matrix.from_npa(e), context, context) for e in x])
            smean_pooling_block_cpu = SequentialMeanPoolingBlock(x_cpu)
            x_cpu.set_length(sequence_len)
            _, dL_doutput = smean_pooling_block_cpu.output.register_usage(
                context, context)
            smean_pooling_block_cpu.fprop()
            random_matrix = self.rng.rand(dL_doutput.nrows, dL_doutput.ncols)
            Matrix.from_npa(random_matrix,
                            'float').copy_to(context, dL_doutput)
            smean_pooling_block_cpu.bprop()
            dL_dmatrices_cpu = [e.backward_matrix.to_host() for e in x_cpu]

            for dL_dmatrix_gpu, dL_dmatrix_cpu in izip(dL_dmatrices_gpu,
                                                       dL_dmatrices_cpu):
                if not np.allclose(dL_dmatrix_gpu, dL_dmatrix_cpu):
                    r.append(False)
                    break
            else:
                r.append(True)

        self.assertEqual(sum(r), self.N)
コード例 #7
0
ファイル: DropoutBlock.py プロジェクト: yiiwood/quagga
 def __init__(self, dropout_prob, x, seed=42, device_id=None):
     self.dropout_prob = dropout_prob
     self.f_context = Context(device_id)
     device_id = self.f_context.device_id
     self.generator = Matrix.get_random_generator(seed)
     if x.bpropagable:
         self.b_context = Context(device_id)
         self.x, self.dL_dx = x.register_usage(device_id, device_id)
     else:
         self.x = x.register_usage(device_id)
     self.output = Matrix.empty_like(self.x)
     self.output = Connector(self.output, device_id if x.bpropagable else None)
     self.training_mode = True
コード例 #8
0
    def test_theano_grad(self):
        quagga.processor_type = 'gpu'
        r = []
        for i in xrange(self.N):
            batch_size, dim = self.rng.random_integers(2000, size=2)
            y_hat = self.rng.randn(batch_size, dim).astype(dtype=np.float32)
            y = self.rng.randn(batch_size, dim).astype(dtype=np.float32)

            # Theano model
            th_y_hat, th_y = T.fmatrix(), T.fmatrix()
            loss = T.mean(T.sum((th_y_hat - th_y) ** 2, axis=1))
            get_theano_grads = theano.function([th_y_hat, th_y], T.grad(loss, wrt=th_y_hat))
            th_dL_dy_hat = get_theano_grads(y_hat, y)

            # quagga model
            context = Context()
            y_hat_gpu = Connector(Matrix.from_npa(y_hat), context, context)
            y_gpu = Connector(Matrix.from_npa(y))
            sigmoid_ce_block = SseBlock(y_hat_gpu, y_gpu)
            sigmoid_ce_block.fprop()
            sigmoid_ce_block.bprop()
            q_dL_dy_hat = y_hat_gpu.backward_matrix.to_host()

            r.append(np.allclose(th_dL_dy_hat, q_dL_dy_hat))

        self.assertEqual(sum(r), self.N)
コード例 #9
0
 def __init__(self, x, scale_factor=1.0):
     self.context = Context(x.device_id)
     device_id = self.context.device_id
     self.output = x
     if x.bpropagable:
         _, self.dL_dx = x.register_usage(device_id, device_id)
     self.scale_factor = ct.c_float(-scale_factor)
コード例 #10
0
    def test_bprop_vector(self):
        r = []
        for _ in xrange(self.N):
            embd_dim = self.rng.random_integers(10000)
            batch_size, output_dim = self.rng.random_integers(2000, size=2)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, 1)).astype(np.int32)
            true_labels = self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32)
            device_id = 0

            output = {}
            for processor_type in ['gpu', 'cpu']:
                quagga.processor_type = processor_type
                qrow_idxs = Connector(Matrix.from_npa(row_idxs))
                qtrue_labels = Connector(Matrix.from_npa(true_labels))
                qW = Connector(Matrix.from_npa(W), device_id)
                row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
                sce_block = SoftmaxCeBlock(row_slicing_block.output, qtrue_labels)
                qW.fprop()
                qrow_idxs.fprop()
                row_slicing_block.fprop()
                sce_block.fprop()
                sce_block.bprop()
                row_slicing_block.bprop()
                qW.add(Context(), qW.backward_matrix)
                output[processor_type] = qW.to_host()

            r.append(np.allclose(output['gpu'], output['cpu']))

        self.assertEqual(sum(r), len(r))
コード例 #11
0
 def __init__(self,
              kkk,
              parameters,
              learning_rate_policy,
              beta1=0.9,
              beta2=0.999,
              epsilon=1e-20):
     self.kkk = kkk
     self.parameters = parameters
     self.m = []
     self.v = []
     self.contexts = []
     for p in self.parameters:
         m = Matrix.empty_like(p)
         m.sync_fill(0.0)
         self.m.append(m)
         v = Matrix.empty_like(p)
         v.sync_fill(0.0)
         self.v.append(v)
         self.contexts.append(Context(p.device_id))
     self.learning_rate_policy = learning_rate_policy
     self.beta1 = beta1
     self.beta2 = beta2
     self.epsilon = epsilon
     self.blocking_contexts = []
     self.iteration = 0
コード例 #12
0
ファイル: Connector.py プロジェクト: yiiwood/quagga
    def bprop(self):
        if not self.bpropagable:
            raise ValueError(
                'Nobody was going to use computation from backward '
                'step. You should not backward propagate!')
        if not self._b_matrices and not self._b_sparse_matrix:
            # When no one registered for providing derivatives zero dense
            # matrix will be returned
            bwd = Matrix.empty_like(self, self._bu_device_id)
            if self._bu_device_id not in self.context:
                self.context[self._bu_device_id] = Context(self._bu_device_id)
            bwd.fill(self.context[self._bu_device_id], 0.0)
            self._b_matrices[self._bu_device_id] = bwd
            return bwd

        if not self._b_matrices and self._b_sparse_matrix:
            return self._b_sparse_matrix

        for bo_device_id, bwd_matrix in self._b_matrices.iteritems():
            if self._bu_device_id != bo_device_id:
                self._b_matrices_pool[self._bu_device_id].assign(
                    self.context[self._bu_device_id], bwd_matrix)
                self._b_matrices[self._bu_device_id].add(
                    self.context[self._bu_device_id],
                    self._b_matrices_pool[self._bu_device_id])
        if self._b_sparse_matrix:
            self._b_matrices[self._bu_device_id].add(
                self.context[self._bu_device_id], self._b_sparse_matrix)
        return self._b_matrices[self._bu_device_id]
コード例 #13
0
ファイル: MeanPoolingBlock.py プロジェクト: yiiwood/quagga
    def __init__(self, matrix, axis=1, device_id=None):
        self.context = Context(device_id)
        self._ctype = matrix.c_dtype
        self._zero = self._ctype(0.0)
        if axis == 0:
            self._ones = Matrix.empty(1, matrix.nrows, matrix.dtype, device_id)
            self.output = Matrix.empty(1, matrix.ncols, matrix.dtype,
                                       device_id)
            self.alpha = self._ctype(1.0 / matrix.nrows)
        elif axis == 1:
            self._ones = Matrix.empty(matrix.ncols, 1, matrix.dtype, device_id)
            self.output = Matrix.empty(matrix.nrows, 1, matrix.dtype,
                                       device_id)
            self.alpha = None
        else:
            raise ValueError('Invalid axis!')
        self._ones.sync_fill(1.0)
        self.axis = axis

        if matrix.bpropagable:
            self.matrix, self.dL_dmatrix = matrix.register_usage(
                self.context, self.context)
            self.output = Connector(self.output, self.context, self.context)
        else:
            self.matrix = matrix.register_usage(self.context)
            self.output = Connector(self.output, self.context)
コード例 #14
0
    def __init__(self, train_data, valid_data, batch_size, word_dropout_prob, device_id):
        self.train_data = HomogeneousDataIterator(train_data, batch_size, randomize=True, infinite=True)
        self.valid_data = HomogeneousDataIterator(valid_data, batch_size)
        self.train_data_iterator = iter(self.train_data)
        self.valid_data_iterator = iter(self.valid_data)
        self.word_keep_prob = 1.0 - word_dropout_prob
        self.rnd = RandomState(47571)
        self.unk_idx = word_to_idx['<UNK>']

        self.context = Context(device_id)
        c = Counter([len(line) for line in chain(train_data, valid_data)])
        print c.most_common()
        max_len = max([len(line) for line in chain(train_data, valid_data)])

        self.enc_x = Connector(Matrix.empty(batch_size, max_len, 'int', device_id))
        self.enc_lengths = Matrix.empty(self.enc_x.nrows, 1, 'int', device_id)
        self._enc_mask = Matrix.empty(self.enc_x.nrows, self.enc_x.ncols, 'float', device_id)
        self.enc_mask = List([Connector(self._enc_mask[:, i]) for i in xrange(max_len)], self.enc_x.ncols)

        self.dec_x = Connector(Matrix.empty(batch_size, max_len + 1, 'int', device_id))
        self._dec_y = Matrix.empty(batch_size, max_len + 1, 'int', device_id)
        self.dec_y = List([Connector(self._dec_y[:, i]) for i in xrange(max_len + 1)], self._dec_y.ncols)
        self.dec_lengths = Matrix.empty(self.dec_x.nrows, 1, 'int', device_id)
        self._dec_mask = Matrix.empty(self.dec_x.nrows, self.dec_x.ncols, 'float', device_id)
        self.dec_mask = List([Connector(self._dec_mask[:, i]) for i in xrange(max_len + 1)], self.dec_x.ncols)

        self.blocking_contexts = None
        self.training_mode = True
コード例 #15
0
 def __init__(self, x, regularization_value):
     self.context = Context(x.device_id)
     device_id = self.context.device_id
     if x.bpropagable:
         self.x, self.dL_dx = x.register_usage(device_id, device_id)
     else:
         self.x = x.register_usage(device_id)
     self.reg_value = ct.c_float(2 * regularization_value)
コード例 #16
0
    def test_bprop(self):
        """
        compare `bprop` results for cpu and gpu backends
        """
        r = []
        for i in xrange(self.N):
            batch_size, x_dim = self.rng.random_integers(3000, size=2)
            x = self.rng.rand(batch_size, x_dim).astype(np.float32)
            device_id = 0

            for nonlinearity in ['sigmoid', 'tanh', 'relu']:
                state = self.rng.get_state()
                quagga.processor_type = 'gpu'

                x_gpu = Connector(Matrix.from_npa(x), device_id)
                nonlinearity_block = NonlinearityBlock(x_gpu, nonlinearity)
                x_gpu.fprop()
                nonlinearity_block.fprop()
                _, dL_doutput = nonlinearity_block.output.register_usage(
                    device_id, device_id)
                random_matrix = self.rng.rand(dL_doutput.nrows,
                                              dL_doutput.ncols)
                dL_doutput.assign(Context(),
                                  Matrix.from_npa(random_matrix, 'float'))
                nonlinearity_block.bprop()
                dL_dx_gpu = x_gpu.backward_matrix.to_host()

                self.rng.set_state(state)
                quagga.processor_type = 'cpu'
                x_cpu = Connector(Matrix.from_npa(x), device_id)
                nonlinearity_block = NonlinearityBlock(x_cpu, nonlinearity)
                x_cpu.fprop()
                nonlinearity_block.fprop()
                _, dL_doutput = nonlinearity_block.output.register_usage(
                    device_id, device_id)
                random_matrix = self.rng.rand(dL_doutput.nrows,
                                              dL_doutput.ncols)
                dL_doutput.assign(Context(),
                                  Matrix.from_npa(random_matrix, 'float'))
                nonlinearity_block.bprop()
                dL_dx_cpu = x_cpu.backward_matrix.to_host()

                r.append(np.allclose(dL_dx_gpu, dL_dx_cpu))

        self.assertEqual(sum(r), len(r))
コード例 #17
0
    def __init__(self, probs, true_labels, schedule, seed, device_id=None):
        self.schedule = schedule
        self.rnd = np.random.RandomState(seed)
        self.context = Context(device_id)
        device_id = self.context.device_id

        self.probs = probs.register_usage(device_id)
        self.true_labels = true_labels.register_usage(device_id)
        self.output = Connector(Matrix.empty_like(self.true_labels))
コード例 #18
0
    def __init__(self, x, axis, device_id=None):
        if axis != 1:
            raise NotImplementedError
        self.axis = axis
        self.context = Context(device_id)
        device_id = self.context.device_id

        self.x = x.register_usage(device_id)
        self.output = Connector(Matrix.empty(x.nrows, 1, x.dtype, device_id))
コード例 #19
0
 def __init__(self, y_hat, y, device_id=None):
     if y_hat.nrows != y.nrows or y_hat.ncols != y.ncols:
         raise ValueError('TODO!')
     self.context = Context(device_id)
     if y_hat.bpropagable:
         self.y_hat, self.dL_dy_hat = y_hat.register_usage(self.context, self.context)
     else:
         self.y_hat = y_hat.register_usage(self.context)
     self.y = y.register_usage(self.context)
コード例 #20
0
ファイル: ColSlicingBlock.py プロジェクト: yiiwood/quagga
 def __init__(self, W, col_indexes):
     device_id = W.device_id
     self.context = Context(device_id)
     learning = W.bpropagable
     if learning:
         self.W, self.dL_dW = W.register_usage_with_sparse_backward_matrix()
     else:
         self.W = W.register_usage(device_id)
     self.col_indexes = col_indexes.register_usage(device_id)
     output = Matrix.empty(W.nrows, col_indexes.ncols, device_id=device_id)
     self.output = Connector(output, device_id if learning else None)
コード例 #21
0
 def __init__(self, parameters, learning_rate_policy, momentum_policy):
     self.parameters = parameters
     self.velocity = []
     for p in self.parameters:
         v = Matrix.empty_like(p)
         v.sync_fill(0.0)
         self.velocity.append(v)
     self.learning_rate_policy = learning_rate_policy
     self.momentum_policy = momentum_policy
     self.contexts = [Context(p.device_id) for p in parameters]
     self.blocking_contexts = []
コード例 #22
0
 def __init__(self, x):
     device_id = x[0].device_id
     learning = x[0].bpropagable
     self.context = Context(device_id)
     self.output = Matrix.empty_like(x[0])
     self.output = Connector(self.output, device_id if learning else None)
     if learning:
         self.x, self.dL_dx = izip(*x.register_usage(device_id, device_id))
     else:
         self.x = x.register_usage(device_id)
     self.last_idx = x.length - 1
コード例 #23
0
    def __init__(self, x_sequence, y_sequence, device_id=None):
        """
        TODO
        """
        # TODO add during hsplit otherwise wrong accumulation of gradients
        if all(e.bpropagable for e in chain(x_sequence, y_sequence)):
            learning = True
        elif all(not e.bpropagable for e in chain(x_sequence, y_sequence)):
            learning = False
        else:
            raise ValueError('All elements should be bpropagable or '
                             'non-bpropagable. Mixed state is not allowed!')
        x_ncols = x_sequence[0].ncols
        y_ncols = y_sequence[0].ncols
        dtype = x_sequence[0].dtype
        for x, y in izip(x_sequence, y_sequence):
            if x.ncols != x_ncols or y.ncols != y_ncols:
                raise ValueError(
                    "All matrices in the sequence should have the same number of columns!"
                )
            if x.nrows != y.nrows:
                raise ValueError(
                    "Can't stack matrices in sequence with different number of rows!"
                )
            if x.dtype != dtype or y.dtype != dtype:
                raise ValueError("Can't stack matrices with different dtypes!")

        self.context = Context(device_id)
        device_id = self.context.device_id
        if learning:
            self.x_sequence, self.dL_dx_sequences = izip(
                *x_sequence.register_usage(device_id, device_id))
            self.y_sequence, self.dL_dy_sequences = izip(
                *y_sequence.register_usage(device_id, device_id))
            self.dL_dx_sequences = List(self.dL_dx_sequences,
                                        x_sequence.length)
            self.dL_dy_sequences = List(self.dL_dy_sequences,
                                        y_sequence.length)
        else:
            self.x_sequence = x_sequence.register_usage(device_id)
            self.y_sequence = y_sequence.register_usage(device_id)
        self.x_sequence = List(self.x_sequence, x_sequence.length)
        self.y_sequence = List(self.y_sequence, y_sequence.length)
        output = []
        for _ in xrange(x_sequence.length):
            matrix = Matrix.empty(x_sequence[0].nrows, x_ncols + y_ncols,
                                  dtype, device_id)
            output.append(Connector(matrix, device_id))
        self.output = List(output, x_sequence.length)
        if learning:
            self.dL_dx_sequences = List(self.dL_dx_sequences,
                                        x_sequence.length)
            self.dL_dy_sequences = List(self.dL_dy_sequences,
                                        x_sequence.length)
コード例 #24
0
 def __init__(self, x, true_labels, mask=None, device_id=None):
     self.context = Context(device_id)
     device_id = self.context.device_id
     if x.bpropagable:
         self.x, self.dL_dx = x.register_usage(device_id, device_id)
     else:
         self.x = x.register_usage(device_id)
     self.true_labels = true_labels.register_usage(device_id)
     if mask:
         self.mask = mask.register_usage(device_id)
     self.probs = Connector(Matrix.empty_like(self.x))
     self.loss = None
コード例 #25
0
 def __init__(self, matrices, device_id=None):
     self.context = Context(device_id)
     device_id = self.context.device_id
     self.output = Matrix.empty_like(matrices[0], device_id)
     learning = matrices[0].bpropagable
     self.output = Connector(self.output, device_id if learning else None)
     if learning:
         self.matrices, self.dL_dmatrices = izip(
             *matrices.register_usage(device_id, device_id))
     else:
         self.matrices = matrices.register_usage(device_id)
     self.length = matrices.length
コード例 #26
0
ファイル: Connector.py プロジェクト: yiiwood/quagga
 def __init__(self, f_matrix, bu_device_id=None):
     self._fo_device_id = f_matrix.device_id
     self._f_matrices = {self._fo_device_id: f_matrix}
     self.context = {self._fo_device_id: Context(self._fo_device_id)}
     if bu_device_id is not None:
         self._bu_device_id = bu_device_id
         self._b_matrices = dict()
         self._b_matrices_pool = dict()
         self._b_sparse_matrix = None
     # We need do this trick because instead we will add attribute
     # to the Connector instance by setting it
     # instead of setting attribute in f_matrix
     self.__f_matrix_setable_attributes = f_matrix.get_setable_attributes()
     for attr_name in self.__f_matrix_setable_attributes:
         getattr(self, attr_name)
コード例 #27
0
ファイル: RmspropStep.py プロジェクト: datatalking/quagga
 def __init__(self,
              parameters,
              learning_rate_policy,
              ema_decay=0.9,
              epsilon=1e-6):
     self.parameters = parameters
     self.grad_sqr = []
     for p in self.parameters:
         grad_sqr = Matrix.empty_like(p)
         grad_sqr.sync_fill(0.0)
         self.grad_sqr.append(grad_sqr)
     self.learning_rate_policy = learning_rate_policy
     self.ema_decay = ema_decay
     self.epsilon = epsilon
     self.contexts = [Context(p.device_id) for p in parameters]
     self.blocking_contexts = []
コード例 #28
0
ファイル: RepeatBlock.py プロジェクト: yiiwood/quagga
 def __init__(self, x, repeats, axis=None, device_id=None):
     self.context = Context(device_id)
     device_id = self.context.device_id
     self.repeats = repeats
     self.axis = axis
     learning = x.bpropagable
     if learning:
         self.x, self.dL_dx = x.register_usage(device_id, device_id)
     else:
         self.x = x.register_usage(device_id)
     if axis == 0:
         self.output = Matrix.empty(x.nrows * repeats, x.ncols, x.dtype, device_id)
     elif axis == 1:
         self.output = Matrix.empty(x.nrows, x.ncols * repeats, x.dtype, device_id)
     else:
         raise ValueError('TODO')
     self.output = Connector(self.output, device_id if learning else None)
コード例 #29
0
    def test_theano_bprop_matrix(self):
        r = []
        for i in xrange(self.N):
            max_input_sequence_len = self.rng.random_integers(300)
            sequence_len = max_input_sequence_len if i == 0 else self.rng.random_integers(2, max_input_sequence_len)
            embd_dim = self.rng.random_integers(10000)
            batch_size = self.rng.random_integers(500)
            output_dim = self.rng.random_integers(2000)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, max_input_sequence_len)).astype(np.int32)
            true_labels = [self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32) for _ in xrange(max_input_sequence_len)]
            device_id = 0

            quagga.processor_type = 'gpu'
            qrow_idxs = Connector(Matrix.from_npa(row_idxs))
            qtrue_labels = List([Connector(Matrix.from_npa(e)) for e in true_labels], qrow_idxs.ncols)
            qW = Connector(Matrix.from_npa(W), device_id)
            row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
            seq_sce_block = SequencerBlock(block_class=SoftmaxCeBlock,
                                           params=[],
                                           sequences=[row_slicing_block.output, qtrue_labels])
            qW.fprop()
            qrow_idxs.ncols = sequence_len
            qrow_idxs.fprop()
            row_slicing_block.fprop()
            seq_sce_block.fprop()
            seq_sce_block.bprop()
            row_slicing_block.bprop()
            qW.add(Context(), qW.backward_matrix)

            th_row_idxs = T.imatrix()
            th_true_labels = T.imatrix()
            row_slicing_layer = RowSlicingLayer(W)
            toutput = row_slicing_layer.get_output_expr(th_row_idxs)
            loss = SequentialSoftmaxLayer.get_loss(toutput, th_true_labels)
            dL_dW = T.grad(loss, row_slicing_layer.W)
            fun = theano.function([th_row_idxs, th_true_labels],
                                  updates=[(row_slicing_layer.W, row_slicing_layer.W + dL_dW)])
            fun(row_idxs, np.hstack(true_labels[:sequence_len]))

            r.append(np.allclose(qW.to_host(), row_slicing_layer.W.get_value(), atol=1e-5))

        self.assertEqual(sum(r), len(r))
コード例 #30
0
 def __init__(self, params, period, parameters_file_path, logger):
     self.params = params
     self.period = period
     self.parameters_file_path = parameters_file_path
     self.logger = logger
     self.iteration = 0
     # we can use our own contexts because during Connector fprop
     # derivative matrices are filling with 0.0 in param's
     # last_usage_context, to_host changes param's last_usage_context.
     # We know that parameters change only during updates of optimizer.
     # Add derivatives can't be calculated until there are jobs to be done
     # in the obtaining context, which happens to be last_usage_context.
     # That is why we are save here.
     # Parameters can be changing during callbacks calls.
     self.context = {}
     for param in params.itervalues():
         if param.device_id not in self.context:
             self.context[param.device_id] = Context(param.device_id)
     self.npa_params = {}