コード例 #1
0
class PtbMiniBatchesGenerator(object):
    def __init__(self, ptb_train, ptb_valid, batch_size, sentence_max_len, device_id):
        self.blocking_contexts = None
        self.context = Context(device_id)
        device_id = self.context.device_id
        self.train_offsets = HomogeneousDataGenerator(ptb_train, batch_size, sentence_max_len, randomize=True, infinite=True)
        self.valid_offsets = HomogeneousDataGenerator(ptb_valid, batch_size, sentence_max_len)

        train_sentences = np.array([self.train_offsets.flatten_sentences])
        valid_sentences = np.array([self.valid_offsets.flatten_sentences])
        self.train_sents = Matrix.from_npa(train_sentences, 'int', device_id)
        self.valid_sents = Matrix.from_npa(valid_sentences, 'int', device_id)
        self._sent_lengths = np.empty((batch_size, 1), dtype=np.int32, order='F')[...]
        self.sent_lengths = Matrix.from_npa(self._sent_lengths, device_id=device_id)

        sentence_batch = Matrix.empty(batch_size, sentence_max_len, 'int', device_id)
        self.sentence_batch = Connector(sentence_batch, self.context)
        self.sentence_batch.sync_fill(0)

        self._mask = Matrix.empty(sentence_batch.nrows, self.sentence_batch.ncols, 'float', device_id)
        self.mask = List([Connector(self._mask[:, i]) for i in xrange(sentence_max_len)], self.sentence_batch.ncols)
        self.train_offsets_iterator = iter(self.train_offsets)
        self.valid_offsets_iterator = iter(self.valid_offsets)
        self.training_mode = True

    def set_training_mode(self):
        self.training_mode = True

    def set_testing_mode(self):
        self.training_mode = False

    def fprop(self):
        if self.training_mode:
            offsets = next(self.train_offsets_iterator)
            sents = self.train_sents
        else:
            try:
                offsets = next(self.valid_offsets_iterator)
                sents = self.valid_sents
            except StopIteration as e:
                self.valid_offsets_iterator = iter(self.valid_offsets)
                raise e
        self.context.wait(*self.blocking_contexts)
        self._sent_lengths = self._sent_lengths.base[:len(offsets)]
        self.sentence_batch.nrows = len(offsets)
        for k, offset in enumerate(offsets):
            self.sentence_batch[k].assign(self.context, sents[:, offset[0]:offset[1]])
            self._sent_lengths[k] = offset[1] - offset[0]
        max_sent_len = int(np.max(self._sent_lengths))
        self.sentence_batch.last_modification_context = self.context
        self.sentence_batch.ncols = max_sent_len
        self.sent_lengths.assign_npa(self.context, self._sent_lengths)
        self._mask.mask_column_numbers_row_wise(self.context, self.sent_lengths)
        for e in self.mask:
            e.last_modification_context = self.context
        self.sentence_batch.fprop()
        self.mask.fprop()
コード例 #2
0
class DataBlock(object):
    def __init__(self, data, char_to_idx, batch_size, x_device_id,
                 y_device_id):
        self.data = HomogeneousDataIterator(data, char_to_idx, batch_size,
                                            True, True)
        self.data_iterator = iter(self.data)
        self.x_context = Context(x_device_id)
        self.y_context = Context(y_device_id)
        max_len = 0
        for sub_line in data:
            cur_len = len(sub_line)
            if cur_len > max_len:
                max_len = cur_len
        print max_len
        self.x = Connector(
            Matrix.empty(batch_size, max_len - 1, 'int', x_device_id))
        self._y = Matrix.empty(batch_size, max_len - 1, 'int', y_device_id)
        self.y = List([Connector(self._y[:, i]) for i in xrange(max_len - 1)],
                      self.x.ncols)
        self.lengths = Matrix.empty(self.x.nrows, 1, 'int', x_device_id)
        self._mask = Matrix.empty(self.x.nrows, self.x.ncols, 'float',
                                  x_device_id)
        self.mask = List(
            [Connector(self._mask[:, i]) for i in xrange(max_len)],
            self.x.ncols)
        self.blocking_contexts = None

    def fprop(self):
        self.x_context.wait(*self.blocking_contexts)
        self.y_context.wait(*self.blocking_contexts)
        data = next(self.data_iterator)
        lengths_npa = np.array([[len(e) - 1] for e in data],
                               np.int32,
                               order='F')
        x_npa = np.zeros((len(data), int(np.max(lengths_npa))), np.int32, 'F')
        for k, e in enumerate(data):
            x_npa[k, :len(e) - 1] = e[:-1]
        self.x.assign_npa(self.x_context, x_npa)
        y_npa = np.zeros((len(data), int(np.max(lengths_npa))), np.int32, 'F')
        for k, e in enumerate(data):
            y_npa[k, :len(e) - 1] = e[1:]
        self._y.assign_npa(self.y_context, y_npa)
        for e in self.y:
            e.last_modification_context = self.y_context
        self.lengths.assign_npa(self.x_context, lengths_npa)
        self._mask.mask_column_numbers_row_wise(self.x_context, self.lengths)
        for e in self.mask:
            e.last_modification_context = self.x_context
        self.x.fprop()
        self.y.fprop()
        self.mask.fprop()
コード例 #3
0
ファイル: deep_lstm.py プロジェクト: Sandy4321/quagga
class DataBlock(object):
    def __init__(self, data, char_to_idx, batch_size, x_device_id, y_device_id):
        self.data = HomogeneousDataIterator(data, char_to_idx, batch_size, True, True)
        self.data_iterator = iter(self.data)
        self.x_context = Context(x_device_id)
        self.y_context = Context(y_device_id)
        max_len = 0
        for sub_line in data:
            cur_len = len(sub_line)
            if cur_len > max_len:
                max_len = cur_len
        print max_len
        self.x = Connector(Matrix.empty(batch_size, max_len - 1, 'int', x_device_id))
        self._y = Matrix.empty(batch_size, max_len - 1, 'int', y_device_id)
        self.y = List([Connector(self._y[:, i]) for i in xrange(max_len - 1)], self.x.ncols)
        self.lengths = Matrix.empty(self.x.nrows, 1, 'int', x_device_id)
        self._mask = Matrix.empty(self.x.nrows, self.x.ncols, 'float', x_device_id)
        self.mask = List([Connector(self._mask[:, i]) for i in xrange(max_len)], self.x.ncols)
        self.blocking_contexts = None

    def fprop(self):
        self.x_context.wait(*self.blocking_contexts)
        self.y_context.wait(*self.blocking_contexts)
        data = next(self.data_iterator)
        lengths_npa = np.array([[len(e) - 1] for e in data], np.int32, order='F')
        x_npa = np.zeros((len(data), int(np.max(lengths_npa))), np.int32, 'F')
        for k, e in enumerate(data):
            x_npa[k, :len(e) - 1] = e[:-1]
        self.x.assign_npa(self.x_context, x_npa)
        y_npa = np.zeros((len(data), int(np.max(lengths_npa))), np.int32, 'F')
        for k, e in enumerate(data):
            y_npa[k, :len(e) - 1] = e[1:]
        self._y.assign_npa(self.y_context, y_npa)
        for e in self.y:
            e.last_modification_context = self.y_context
        self.lengths.assign_npa(self.x_context, lengths_npa)
        self._mask.mask_column_numbers_row_wise(self.x_context, self.lengths)
        for e in self.mask:
            e.last_modification_context = self.x_context
        self.x.fprop()
        self.y.fprop()
        self.mask.fprop()
コード例 #4
0
class PtbMiniBatchesGenerator(object):
    def __init__(self, ptb_train, ptb_valid, batch_size, sentence_max_len,
                 device_id):
        self.blocking_contexts = None
        self.context = Context(device_id)
        device_id = self.context.device_id
        self.train_offsets = HomogeneousDataGenerator(ptb_train,
                                                      batch_size,
                                                      sentence_max_len,
                                                      randomize=True,
                                                      infinite=True)
        self.valid_offsets = HomogeneousDataGenerator(ptb_valid, batch_size,
                                                      sentence_max_len)

        train_sentences = np.array([self.train_offsets.flatten_sentences])
        valid_sentences = np.array([self.valid_offsets.flatten_sentences])
        self.train_sents = Matrix.from_npa(train_sentences, 'int', device_id)
        self.valid_sents = Matrix.from_npa(valid_sentences, 'int', device_id)
        self._sent_lengths = np.empty((batch_size, 1),
                                      dtype=np.int32,
                                      order='F')[...]
        self.sent_lengths = Matrix.from_npa(self._sent_lengths,
                                            device_id=device_id)

        sentence_batch = Matrix.empty(batch_size, sentence_max_len, 'int',
                                      device_id)
        self.sentence_batch = Connector(sentence_batch, self.context)
        self.sentence_batch.sync_fill(0)

        self._mask = Matrix.empty(sentence_batch.nrows,
                                  self.sentence_batch.ncols, 'float',
                                  device_id)
        self.mask = List(
            [Connector(self._mask[:, i]) for i in xrange(sentence_max_len)],
            self.sentence_batch.ncols)
        self.train_offsets_iterator = iter(self.train_offsets)
        self.valid_offsets_iterator = iter(self.valid_offsets)
        self.training_mode = True

    def set_training_mode(self):
        self.training_mode = True

    def set_testing_mode(self):
        self.training_mode = False

    def fprop(self):
        if self.training_mode:
            offsets = next(self.train_offsets_iterator)
            sents = self.train_sents
        else:
            try:
                offsets = next(self.valid_offsets_iterator)
                sents = self.valid_sents
            except StopIteration as e:
                self.valid_offsets_iterator = iter(self.valid_offsets)
                raise e
        self.context.wait(*self.blocking_contexts)
        self._sent_lengths = self._sent_lengths.base[:len(offsets)]
        self.sentence_batch.nrows = len(offsets)
        for k, offset in enumerate(offsets):
            self.sentence_batch[k].assign(self.context,
                                          sents[:, offset[0]:offset[1]])
            self._sent_lengths[k] = offset[1] - offset[0]
        max_sent_len = int(np.max(self._sent_lengths))
        self.sentence_batch.last_modification_context = self.context
        self.sentence_batch.ncols = max_sent_len
        self.sent_lengths.assign_npa(self.context, self._sent_lengths)
        self._mask.mask_column_numbers_row_wise(self.context,
                                                self.sent_lengths)
        for e in self.mask:
            e.last_modification_context = self.context
        self.sentence_batch.fprop()
        self.mask.fprop()
コード例 #5
0
class MnistMiniBatchesGenerator(object):
    def __init__(self, train_x, train_y, valid_x, valid_y, batch_size, device_id):
        self.context = Context(device_id)
        device_id = self.context.device_id
        self.train_x = Matrix.from_npa(train_x.T.astype(np.float32), device_id=device_id)
        self.valid_x = Matrix.from_npa(valid_x.T.astype(np.float32), device_id=device_id)
        self.train_y = Matrix.from_npa(train_y[:, np.newaxis], 'int', device_id=device_id)
        self.valid_y = Matrix.from_npa(valid_y[:, np.newaxis], 'int', device_id=device_id)
        self.batch_size = batch_size

        x = Matrix.empty(self.batch_size, self.train_x.nrows, device_id=device_id)
        y = Matrix.empty(self.batch_size, 1, 'int', device_id)
        self.x = Connector(x)
        self.y = Connector(y)

        self.train_indices = np.arange(int(self.train_x.ncols), dtype=np.int32)
        self.valid_indices = np.arange(int(self.valid_x.ncols), dtype=np.int32)
        self.indices = Matrix.empty(self.batch_size, 1, 'int', device_id)
        self.rng = np.random.RandomState(42)
        self.rng.shuffle(self.train_indices)
        self.train_i = 0
        self.valid_i = 0
        self.training_mode = True

        self.blocking_contexts = None

    def set_training_mode(self):
        self.training_mode = True

    def set_testing_mode(self):
        self.training_mode = False

    def fprop(self):
        indices = self.train_indices if self.training_mode else self.valid_indices
        i = self.train_i if self.training_mode else self.valid_i
        x = self.train_x if self.training_mode else self.valid_x
        y = self.train_y if self.training_mode else self.valid_y

        indices = indices[self.batch_size * i:self.batch_size * (i + 1)]
        indices = np.asfortranarray(indices[:, np.newaxis])

        if self.training_mode:
            self.train_i += 1
        else:
            self.valid_i += 1

        if indices.size:
            self.indices.assign_npa(self.context, indices)
            self.x.nrows = indices.size
            self.y.nrows = indices.size
            self.context.wait(*self.blocking_contexts)
            x.slice_columns_and_transpose(self.context, self.indices, self.x)
            y.slice_rows(self.context, self.indices, self.y)
            self.x.fprop()
            self.y.fprop()
        else:
            if self.training_mode:
                self.train_i = 0
                self.rng.shuffle(self.train_indices)
                self.fprop()
            else:
                self.valid_i = 0
                raise StopIteration()
コード例 #6
0
class LstmBlock(object):
    """
    A long short-term memory (LSTM) block.

    Parameters
    ----------
    W
    R
    b
    grad_clipping
    x
    mask
    prev_c
    prev_h
    device_id : int
        Defines the device's id on which the computation will take place


    Returns
    -------
    """
    def __init__(self, W, R, b, grad_clipping, x, mask, prev_c, prev_h, device_id=None):
        self.f_context = Context(device_id)
        device_id = self.f_context.device_id
        if W.bpropagable:
            self.W, self.dL_dW = W.register_usage(device_id, device_id)
            self.W_b_context = Context(device_id)
        else:
            self.W = W.register_usage(device_id)
        if R.bpropagable:
            self.R, self.dL_dR = R.register_usage(device_id, device_id)
            self.R_b_context = Context(device_id)
        else:
            self.R = R.register_usage(device_id)
        if b.bpropagable:
            self.b, self.dL_db = b.register_usage(device_id, device_id)
            self.b_b_context = Context(device_id)
        else:
            self.b = b.register_usage(device_id)
        self.grad_clipping = grad_clipping
        if x.bpropagable:
            self.x, self.dL_dx = x.register_usage(device_id, device_id)
            self.x_b_context = Context(device_id)
        else:
            self.x = x.register_usage(device_id)
        if mask:
            self.mask = mask.register_usage(device_id)
        if prev_c.bpropagable:
            self.prev_c, self.dL_dprev_c = prev_c.register_usage(device_id, device_id)
            self.prev_c_b_context = Context(device_id)
        else:
            self.prev_c = prev_c.register_usage(device_id)
        if prev_h.bpropagable:
            self.prev_h, self.dL_dprev_h = prev_h.register_usage(device_id, device_id)
            self.prev_h_b_context = Context(device_id)
        else:
            self.prev_h = prev_h.register_usage(device_id)
        self.learning = W.bpropagable or R.bpropagable or x.bpropagable or \
                        prev_c.bpropagable or prev_h.bpropagable
        if self.learning:
            self.b_context = Context(device_id)

        dim = self.R.nrows
        batch_size = self.x.nrows

        self.zifo = Matrix.empty(batch_size, 4 * dim, device_id=device_id)
        self.z = self.zifo[:, 0*dim:1*dim]
        self.i = self.zifo[:, 1*dim:2*dim]
        self.f = self.zifo[:, 2*dim:3*dim]
        self.o = self.zifo[:, 3*dim:4*dim]
        self.c = Matrix.empty_like(self.prev_c, device_id)
        self.c = Connector(self.c, device_id if self.learning else None)
        self.tanh_c = Matrix.empty_like(self.c, device_id)
        self.h = Matrix.empty_like(self.c, device_id)
        self.h = Connector(self.h, device_id if self.learning else None)

        if self.learning:
            self._dzifo_dpre_zifo = Matrix.empty_like(self.zifo)
            self.dz_dpre_z = self._dzifo_dpre_zifo[:, 0*dim:1*dim]
            self.di_dpre_i = self._dzifo_dpre_zifo[:, 1*dim:2*dim]
            self.df_dpre_f = self._dzifo_dpre_zifo[:, 2*dim:3*dim]
            self.do_dpre_o = self._dzifo_dpre_zifo[:, 3*dim:4*dim]
            self.dL_dpre_zifo = self._dzifo_dpre_zifo
            self.dL_dpre_z = self.dz_dpre_z
            self.dL_dpre_i = self.di_dpre_i
            self.dL_dpre_f = self.df_dpre_f
            self.dL_dpre_o = self.do_dpre_o
            self._dtanh_c_dc = Matrix.empty_like(self.c)

    @property
    def dzifo_dpre_zifo(self):
        if self.learning:
            return self._dzifo_dpre_zifo

    @property
    def dtanh_c_dc(self):
        if self.learning:
            return self._dtanh_c_dc

    def fprop(self):
        # zifo = tanh_sigm(x[t] * W + h[t-1] * R + b)
        self.zifo.assign_dot(self.f_context, self.x, self.W)
        self.zifo.add_dot(self.f_context, self.prev_h, self.R)
        self.zifo.add(self.f_context, self.b)
        self.zifo.tanh_sigm(self.f_context, self.zifo, self.dzifo_dpre_zifo, axis=1)

        # c[t] = i[t] .* z[t] + f[t] .* c[t-1]
        # h[t] = o[t] .* tanh(c[t])
        self.c.assign_sum_hprod(self.f_context, self.i, self.z, self.f, self.prev_c)
        self.c.tanh(self.f_context, self.tanh_c, self.dtanh_c_dc)
        self.h.assign_hprod(self.f_context, self.o, self.tanh_c)
        if hasattr(self, 'mask'):
            # s[t] = mask .* s[t] + (1 - mask) .* s[t-1]
            self.c.assign_masked_addition(self.f_context, self.mask, self.c, self.prev_c)
            self.h.assign_masked_addition(self.f_context, self.mask, self.h, self.prev_h)
        self.c.fprop()
        self.h.fprop()

    def bprop(self):
        dL_dc = self.c.backward_matrix
        dL_dh = self.h.backward_matrix
        if hasattr(self, 'mask'):
            # dL/ds[t-1] = (1 - mask) .* dL/ds[t]
            # dL/ds[t] = mask .* dL/ds[t]
            if hasattr(self, 'dL_dprev_c'):
                self.dL_dprev_c.add_hprod_one_minus_mask(self.prev_c_b_context, self.mask, dL_dc)
            dL_dc.hprod(self.prev_c_b_context, self.mask)
            if hasattr(self, 'dL_dprev_h'):
                self.dL_dprev_h.add_hprod_one_minus_mask(self.prev_h_b_context, self.mask, dL_dh)
            dL_dh.hprod(self.prev_h_b_context, self.mask)
        # dL/dc[t] = dL[t+1]/dc[t] + dL/dh[t] .* o[t] .* dtanh(c[t])/dc[t]
        dL_dc.add_hprod(self.b_context, dL_dh, self.o, self.dtanh_c_dc)

        # self.dzifo_dpre_zifo was calculated in self.f_context,
        # now we have to explicitly wait it in context self.b_context, because
        # self.dx_dpre_x does not have proper last_modif_context
        self.b_context.wait(self.f_context)
        # dL/dpre_o[t] = dL/dh[t] .* tanh(c[t]) .* do[t]/dpre_o[t]
        # dL/dpre_f[t] = dL/dc[t] .* c[t-1] .* df[t]/dpre_f[t]
        # dL/dpre_i[t] = dL/dc[t] .* z[t] .* di[t]/dpre_i[t]
        # dL/dpre_z[t] = dL/dc[t] .* i[t] .* dz[t]/dpre_z[t]
        self.dL_dpre_o.assign_hprod(self.b_context, dL_dh, self.tanh_c, self.do_dpre_o)
        self.dL_dpre_f.assign_hprod(self.b_context, dL_dc, self.prev_c, self.df_dpre_f)
        self.dL_dpre_i.assign_hprod(self.b_context, dL_dc, self.z, self.di_dpre_i)
        self.dL_dpre_z.assign_hprod(self.b_context, dL_dc, self.i, self.dz_dpre_z)
        if self.grad_clipping:
            self.dL_dpre_zifo.clip(self.b_context, -self.grad_clipping, self.grad_clipping)
        else:
            self.dL_dpre_zifo.last_modif_context = self.b_context
        if hasattr(self, 'dL_dW'):
            # dL_dW += x[t].T * dL/dpre_zifo[t]
            self.dL_dW.add_dot(self.W_b_context, self.x, self.dL_dpre_zifo, 'T')
        if hasattr(self, 'dL_dR'):
            # dL_dR += h[t-1].T * dL/dpre_zifo[t]
            self.dL_dR.add_dot(self.R_b_context, self.prev_h, self.dL_dpre_zifo, 'T')
        if hasattr(self, 'dL_db'):
            # dL_db += sum(dL/dpre_zifo[t], axis=0)
            self.dL_db.add_repeat_derivative(self.b_b_context, self.dL_dpre_zifo, self.dL_dpre_zifo.nrows, axis=0)
        if hasattr(self, 'dL_dx'):
            # dL/dx[t] = dL/dpre_zifo[t] * W.T
            self.dL_dx.add_dot(self.x_b_context, self.dL_dpre_zifo, self.W, 'N', 'T')
        if hasattr(self, 'dL_dprev_c'):
            # dL/dc[t-1] = f[t] .* dL/dc[t]
            self.dL_dprev_c.add_hprod(self.prev_c_b_context, self.f, dL_dc)
        if hasattr(self, 'dL_dprev_h'):
            # dL/dh[t-1] = dL/dpre_zifo[t] * R.T
            self.dL_dprev_h.add_dot(self.prev_h_b_context, self.dL_dpre_zifo, self.R, 'N', 'T')