def test(): # This piece of code was used to print index of the external entity that produces the best candidate. for dataset in datasets: queries = get_evaluated_queries(dataset, True, parameters) for index, query in enumerate(queries): external_entities = dict() max_f1 = 0 for candidate in query.eval_candidates: f1 = candidate.evaluation_result.f1 max_f1 = max(max_f1, f1) for entity in candidate.query_candidate.matched_entities: if entity.entity.external_entity: count = entity.entity.external_entity_count if entity.entity.name not in external_entities: external_entities[entity.entity.name] = (count, f1) if external_entities[entity.entity.name][1] < f1: external_entities[entity.entity.name] = (count, f1) external_entities = [(entry[0], entry[1][1]) for entry in sorted(external_entities.iteritems(), key=lambda e: e[1][0], reverse=True)] if external_entities: max_external_f1 = max(f1 for _, f1 in external_entities) if max_external_f1 == max_f1: position = [f1 for _, f1 in external_entities].index(max_external_f1) positions.append((query.utterance, external_entities[position][0], position)) print "\n".join(map(str, positions)) positions = [pos for q, n, pos in positions] print positions, min(positions), avg(positions), max(positions)
def print_sparql_queries(): import argparse parser = argparse.ArgumentParser(description="Dump qa entity pairs.") parser.add_argument("--config", default="config.cfg", help="The configuration file to use.") parser.add_argument("--output", help="The file to dump results to.") args = parser.parse_args() globals.read_configuration(args.config) scorer_globals.init() parameters = translator.TranslatorParameters() parameters.require_relation_match = False parameters.restrict_answer_type = False dataset = "webquestions_test_filter" sparql_backend = globals.get_sparql_backend(globals.config) queries = get_evaluated_queries(dataset, True, parameters) for index, query in enumerate(queries): print "--------------------------------------------" print query.utterance print "\n".join([str((entity.__class__, entity.entity)) for entity in query.eval_candidates[0].query_candidate.query.identified_entities]) for eval_candidate in query.eval_candidates: query_candidate = eval_candidate.query_candidate query_candidate.sparql_backend = sparql_backend notable_types = query_candidate.get_answers_notable_types() if notable_types: print notable_types print query_candidate.graph_as_simple_string().encode("utf-8") print query_candidate.to_sparql_query().encode("utf-8") print "\n\n"
def train_type_model(): globals.read_configuration('config.cfg') parser = globals.get_parser() scorer_globals.init() datasets = ["webquestions_split_train", ] parameters = translator.TranslatorParameters() parameters.require_relation_match = False parameters.restrict_answer_type = False feature_extractor = FeatureExtractor(False, False, n_gram_types_features=True) features = [] labels = [] for dataset in datasets: queries = get_evaluated_queries(dataset, True, parameters) for index, query in enumerate(queries): tokens = [token.lemma for token in parser.parse(query.utterance).tokens] n_grams = get_grams_feats(tokens) answer_entities = [mid for answer in query.target_result for mid in KBEntity.get_entityid_by_name(answer, keep_most_triples=True)] correct_notable_types = set(filter(lambda x: x, [KBEntity.get_notable_type(entity_mid) for entity_mid in answer_entities])) other_notable_types = set() for candidate in query.eval_candidates: entities = [mid for entity_name in candidate.prediction for mid in KBEntity.get_entityid_by_name(entity_name, keep_most_triples=True)] other_notable_types.update(set([KBEntity.get_notable_type(entity_mid) for entity_mid in entities])) incorrect_notable_types = other_notable_types.difference(correct_notable_types) for type in correct_notable_types.union(incorrect_notable_types): if type in correct_notable_types: labels.append(1) else: labels.append(0) features.append(feature_extractor.extract_ngram_features(n_grams, [type, ], "type")) with open("type_model_data.pickle", 'wb') as out: pickle.dump((features, labels), out) label_encoder = LabelEncoder() labels = label_encoder.fit_transform(labels) vec = DictVectorizer(sparse=True) X = vec.fit_transform(features) feature_selector = SelectPercentile(chi2, percentile=5).fit(X, labels) vec.restrict(feature_selector.get_support()) X = feature_selector.transform(X) type_scorer = SGDClassifier(loss='log', class_weight='auto', n_iter=1000, alpha=1.0, random_state=999, verbose=5) type_scorer.fit(X, labels) with open("type-model.pickle", 'wb') as out: pickle.dump((vec, type_scorer), out)
scorer_globals.init() parameters = translator.TranslatorParameters() parameters.require_relation_match = False parameters.restrict_answer_type = False # datasets = ["webquestions_split_train", "webquestions_split_dev",] # datasets = ["webquestions_split_train_externalentities", "webquestions_split_dev_externalentities",] # datasets = ["webquestions_split_train_externalentities3", "webquestions_split_dev_externalentities3",] datasets = ["webquestions_train_externalentities_all", "webquestions_test_externalentities_all", ] count = 0 correct_relations = set() positions = [] for dataset in datasets: queries = get_evaluated_queries(dataset, True, parameters) for index, query in enumerate(queries): # Correct answer # entity_names.update(query.target_result) # if query.oracle_position != -1: # if dataset == datasets[0]: # correct_relations.update([r.name for r in query.eval_candidates[query.oracle_position - 1].query_candidate.relations]) # else: # for relation in query.eval_candidates[query.oracle_position - 1].query_candidate.relations: # if relation.name not in correct_relations: # print query.utterance # print relation.name # print query.eval_candidates[query.oracle_position - 1].query_candidate # print "-----"
if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Console based translation.") parser.add_argument("--config", default="config.cfg", help="The configuration file to use.") args = parser.parse_args() globals.read_configuration(args.config) scorer_globals.init() question_serps = get_questions_serps() parameters = translator.TranslatorParameters() parameters.require_relation_match = False parameters.restrict_answer_type = False queries = get_evaluated_queries("webquestions_small_train", True, parameters) urls = set() entity_mids = set() entity_names = set() for query in queries: entity_names.update(query.target_result) for candidate in query.eval_candidates: entity_names.update(candidate.prediction) for entity in candidate.query_candidate.matched_entities: entity_mids.add(entity.entity.entity.id) entity_names.add(entity.entity.name) # Go through search results. question = query.utterance for document in question_serps[question][: globals.SEARCH_RESULTS_TOPN]: urls.add(document.url)
def extract_npmi_ngram_type_pairs(): globals.read_configuration('config.cfg') scorer_globals.init() datasets = ["webquestions_split_train", ] parameters = translator.TranslatorParameters() parameters.require_relation_match = False parameters.restrict_answer_type = False n_gram_type_counts = dict() type_counts = dict() n_gram_counts = dict() total = 0 year_pattern = re.compile("[0-9]+") for dataset in datasets: queries = get_evaluated_queries(dataset, True, parameters) for index, query in enumerate(queries): if query.oracle_position != -1 and query.oracle_position <= len(query.eval_candidates): correct_candidate = query.eval_candidates[query.oracle_position - 1] logger.info(query.utterance) logger.info(correct_candidate.query_candidate) n_grams = set(get_n_grams_features(correct_candidate.query_candidate)) answer_entities = [mid for answer in query.target_result if year_pattern.match(answer) is None for mid in KBEntity.get_entityid_by_name(answer, keep_most_triples=True)] correct_notable_types = set(filter(lambda x: x, [KBEntity.get_notable_type(entity_mid) for entity_mid in answer_entities])) for notable_type in correct_notable_types: if notable_type not in type_counts: type_counts[notable_type] = 0 type_counts[notable_type] += 1 for n_gram in n_grams: if n_gram not in n_gram_counts: n_gram_counts[n_gram] = 0 n_gram_counts[n_gram] += 1 for notable_type in correct_notable_types: pair = (n_gram, notable_type) if pair not in n_gram_type_counts: n_gram_type_counts[pair] = 0 n_gram_type_counts[pair] += 1 total += 1 npmi = dict() from math import log for n_gram_type_pair, n_gram_type_count in n_gram_type_counts.iteritems(): if n_gram_type_count > 4: n_gram, type = n_gram_type_pair npmi[n_gram_type_pair] = (log(n_gram_type_count) - log(n_gram_counts[n_gram]) - log(type_counts[type]) + log(total)) / (-log(n_gram_type_count) + log(total)) with open("type_model_npmi.pickle", 'wb') as out: pickle.dump(npmi, out) import operator npmi = sorted(npmi.items(), key=operator.itemgetter(1), reverse=True) print "\n".join(map(str, npmi[:50]))