Exemplo n.º 1
0
def test():
    # This piece of code was used to print index of the external entity that produces the best candidate.
    for dataset in datasets:
        queries = get_evaluated_queries(dataset, True, parameters)
        for index, query in enumerate(queries):
            external_entities = dict()
            max_f1 = 0
            for candidate in query.eval_candidates:
                f1 = candidate.evaluation_result.f1
                max_f1 = max(max_f1, f1)
                for entity in candidate.query_candidate.matched_entities:
                    if entity.entity.external_entity:
                        count = entity.entity.external_entity_count
                        if entity.entity.name not in external_entities:
                            external_entities[entity.entity.name] = (count, f1)
                        if external_entities[entity.entity.name][1] < f1:
                            external_entities[entity.entity.name] = (count, f1)
            external_entities = [(entry[0], entry[1][1]) for entry in sorted(external_entities.iteritems(), key=lambda e: e[1][0], reverse=True)]
            if external_entities:
                max_external_f1 = max(f1 for _, f1 in external_entities)
                if max_external_f1 == max_f1:
                    position = [f1 for _, f1 in external_entities].index(max_external_f1)
                    positions.append((query.utterance, external_entities[position][0], position))

    print "\n".join(map(str, positions))
    positions = [pos for q, n, pos in positions]
    print positions, min(positions), avg(positions), max(positions)
Exemplo n.º 2
0
def print_sparql_queries():
    import argparse

    parser = argparse.ArgumentParser(description="Dump qa entity pairs.")
    parser.add_argument("--config",
                        default="config.cfg",
                        help="The configuration file to use.")
    parser.add_argument("--output",
                        help="The file to dump results to.")
    args = parser.parse_args()
    globals.read_configuration(args.config)
    scorer_globals.init()

    parameters = translator.TranslatorParameters()
    parameters.require_relation_match = False
    parameters.restrict_answer_type = False

    dataset = "webquestions_test_filter"

    sparql_backend = globals.get_sparql_backend(globals.config)
    queries = get_evaluated_queries(dataset, True, parameters)
    for index, query in enumerate(queries):
        print "--------------------------------------------"
        print query.utterance
        print "\n".join([str((entity.__class__, entity.entity)) for entity in query.eval_candidates[0].query_candidate.query.identified_entities])
        for eval_candidate in query.eval_candidates:
            query_candidate = eval_candidate.query_candidate
            query_candidate.sparql_backend = sparql_backend
            notable_types = query_candidate.get_answers_notable_types()
            if notable_types:
                print notable_types
                print query_candidate.graph_as_simple_string().encode("utf-8")
                print query_candidate.to_sparql_query().encode("utf-8")
                print "\n\n"
Exemplo n.º 3
0
def train_type_model():
    globals.read_configuration('config.cfg')
    parser = globals.get_parser()
    scorer_globals.init()

    datasets = ["webquestions_split_train", ]

    parameters = translator.TranslatorParameters()
    parameters.require_relation_match = False
    parameters.restrict_answer_type = False

    feature_extractor = FeatureExtractor(False, False, n_gram_types_features=True)
    features = []
    labels = []
    for dataset in datasets:
        queries = get_evaluated_queries(dataset, True, parameters)
        for index, query in enumerate(queries):
            tokens = [token.lemma for token in parser.parse(query.utterance).tokens]
            n_grams = get_grams_feats(tokens)

            answer_entities = [mid for answer in query.target_result
                               for mid in KBEntity.get_entityid_by_name(answer, keep_most_triples=True)]
            correct_notable_types = set(filter(lambda x: x,
                                               [KBEntity.get_notable_type(entity_mid)
                                                for entity_mid in answer_entities]))

            other_notable_types = set()
            for candidate in query.eval_candidates:
                entities = [mid for entity_name in candidate.prediction
                            for mid in KBEntity.get_entityid_by_name(entity_name, keep_most_triples=True)]
                other_notable_types.update(set([KBEntity.get_notable_type(entity_mid) for entity_mid in entities]))
            incorrect_notable_types = other_notable_types.difference(correct_notable_types)

            for type in correct_notable_types.union(incorrect_notable_types):
                if type in correct_notable_types:
                    labels.append(1)
                else:
                    labels.append(0)
                features.append(feature_extractor.extract_ngram_features(n_grams, [type, ], "type"))

    with open("type_model_data.pickle", 'wb') as out:
        pickle.dump((features, labels), out)

    label_encoder = LabelEncoder()
    labels = label_encoder.fit_transform(labels)
    vec = DictVectorizer(sparse=True)
    X = vec.fit_transform(features)
    feature_selector = SelectPercentile(chi2, percentile=5).fit(X, labels)
    vec.restrict(feature_selector.get_support())
    X = feature_selector.transform(X)
    type_scorer = SGDClassifier(loss='log', class_weight='auto',
                                n_iter=1000,
                                alpha=1.0,
                                random_state=999,
                                verbose=5)
    type_scorer.fit(X, labels)
    with open("type-model.pickle", 'wb') as out:
        pickle.dump((vec, type_scorer), out)
Exemplo n.º 4
0
    scorer_globals.init()

    parameters = translator.TranslatorParameters()
    parameters.require_relation_match = False
    parameters.restrict_answer_type = False

    # datasets = ["webquestions_split_train", "webquestions_split_dev",]
    # datasets = ["webquestions_split_train_externalentities", "webquestions_split_dev_externalentities",]
    # datasets = ["webquestions_split_train_externalentities3", "webquestions_split_dev_externalentities3",]
    datasets = ["webquestions_train_externalentities_all", "webquestions_test_externalentities_all", ]

    count = 0
    correct_relations = set()
    positions = []
    for dataset in datasets:
        queries = get_evaluated_queries(dataset, True, parameters)
        for index, query in enumerate(queries):
            # Correct answer
            # entity_names.update(query.target_result)

            # if query.oracle_position != -1:
            #     if dataset == datasets[0]:
            #         correct_relations.update([r.name for r in query.eval_candidates[query.oracle_position - 1].query_candidate.relations])
            #     else:
            #         for relation in query.eval_candidates[query.oracle_position - 1].query_candidate.relations:
            #             if relation.name not in correct_relations:
            #                 print query.utterance
            #                 print relation.name
            #                 print query.eval_candidates[query.oracle_position - 1].query_candidate
            #                 print "-----"
Exemplo n.º 5
0
if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Console based translation.")
    parser.add_argument("--config", default="config.cfg", help="The configuration file to use.")
    args = parser.parse_args()
    globals.read_configuration(args.config)
    scorer_globals.init()

    question_serps = get_questions_serps()

    parameters = translator.TranslatorParameters()
    parameters.require_relation_match = False
    parameters.restrict_answer_type = False
    queries = get_evaluated_queries("webquestions_small_train", True, parameters)
    urls = set()
    entity_mids = set()
    entity_names = set()
    for query in queries:
        entity_names.update(query.target_result)
        for candidate in query.eval_candidates:
            entity_names.update(candidate.prediction)
            for entity in candidate.query_candidate.matched_entities:
                entity_mids.add(entity.entity.entity.id)
                entity_names.add(entity.entity.name)

        # Go through search results.
        question = query.utterance
        for document in question_serps[question][: globals.SEARCH_RESULTS_TOPN]:
            urls.add(document.url)
Exemplo n.º 6
0
def extract_npmi_ngram_type_pairs():
    globals.read_configuration('config.cfg')
    scorer_globals.init()

    datasets = ["webquestions_split_train", ]

    parameters = translator.TranslatorParameters()
    parameters.require_relation_match = False
    parameters.restrict_answer_type = False

    n_gram_type_counts = dict()
    type_counts = dict()
    n_gram_counts = dict()
    total = 0
    year_pattern = re.compile("[0-9]+")
    for dataset in datasets:
        queries = get_evaluated_queries(dataset, True, parameters)
        for index, query in enumerate(queries):
            if query.oracle_position != -1 and query.oracle_position <= len(query.eval_candidates):
                correct_candidate = query.eval_candidates[query.oracle_position - 1]
                logger.info(query.utterance)
                logger.info(correct_candidate.query_candidate)

                n_grams = set(get_n_grams_features(correct_candidate.query_candidate))

                answer_entities = [mid for answer in query.target_result
                                   if year_pattern.match(answer) is None
                                   for mid in KBEntity.get_entityid_by_name(answer, keep_most_triples=True)]
                correct_notable_types = set(filter(lambda x: x,
                                                   [KBEntity.get_notable_type(entity_mid)
                                                    for entity_mid in answer_entities]))

                for notable_type in correct_notable_types:
                    if notable_type not in type_counts:
                        type_counts[notable_type] = 0
                    type_counts[notable_type] += 1

                for n_gram in n_grams:
                    if n_gram not in n_gram_counts:
                        n_gram_counts[n_gram] = 0
                    n_gram_counts[n_gram] += 1

                    for notable_type in correct_notable_types:
                        pair = (n_gram, notable_type)
                        if pair not in n_gram_type_counts:
                            n_gram_type_counts[pair] = 0
                        n_gram_type_counts[pair] += 1

                total += 1

    npmi = dict()
    from math import log
    for n_gram_type_pair, n_gram_type_count in n_gram_type_counts.iteritems():
        if n_gram_type_count > 4:
            n_gram, type = n_gram_type_pair
            npmi[n_gram_type_pair] = (log(n_gram_type_count) - log(n_gram_counts[n_gram]) - log(type_counts[type]) +
                                        log(total)) / (-log(n_gram_type_count) + log(total))

    with open("type_model_npmi.pickle", 'wb') as out:
        pickle.dump(npmi, out)

    import operator
    npmi = sorted(npmi.items(), key=operator.itemgetter(1), reverse=True)
    print "\n".join(map(str, npmi[:50]))