def solve(self, rho0, tlist, options=None): """ Solve the ODE for the evolution of diagonal states and Hamiltonians. """ if options is None: options = Options() output = Result() output.solver = "pisolve" output.times = tlist output.states = [] output.states.append(Qobj(rho0)) rhs_generate = lambda y, tt, M: M.dot(y) rho0_flat = np.diag(np.real(rho0.full())) L = self.coefficient_matrix() rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,)) for r in rho_t[1:]: diag = np.diag(r) output.states.append(Qobj(diag)) return output
def _td_brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={}, use_secular=True, sec_cutoff=0.1, tol=qset.atol, options=None, progress_bar=None,_safe_mode=True, verbose=False, _prep_time=0): if isket(psi0): rho0 = ket2dm(psi0) else: rho0 = psi0 nrows = rho0.shape[0] H_terms = [] H_td_terms = [] H_obj = [] A_terms = [] A_td_terms = [] C_terms = [] C_td_terms = [] CA_obj = [] spline_count = [0,0] coupled_ops = [] coupled_lengths = [] coupled_spectra = [] if isinstance(H, Qobj): H_terms.append(H.full('f')) H_td_terms.append('1') else: for kk, h in enumerate(H): if isinstance(h, Qobj): H_terms.append(h.full('f')) H_td_terms.append('1') elif isinstance(h, list): H_terms.append(h[0].full('f')) if isinstance(h[1], Cubic_Spline): H_obj.append(h[1].coeffs) spline_count[0] += 1 H_td_terms.append(h[1]) else: raise Exception('Invalid Hamiltonian specification.') for kk, c in enumerate(c_ops): if isinstance(c, Qobj): C_terms.append(c.full('f')) C_td_terms.append('1') elif isinstance(c, list): C_terms.append(c[0].full('f')) if isinstance(c[1], Cubic_Spline): CA_obj.append(c[1].coeffs) spline_count[0] += 1 C_td_terms.append(c[1]) else: raise Exception('Invalid collapse operator specification.') coupled_offset = 0 for kk, a in enumerate(a_ops): if isinstance(a, list): if isinstance(a[0], Qobj): A_terms.append(a[0].full('f')) A_td_terms.append(a[1]) if isinstance(a[1], tuple): if not len(a[1])==2: raise Exception('Tuple must be len=2.') if isinstance(a[1][0],Cubic_Spline): spline_count[1] += 1 if isinstance(a[1][1],Cubic_Spline): spline_count[1] += 1 elif isinstance(a[0], tuple): if not isinstance(a[1], tuple): raise Exception('Invalid bath-coupling specification.') if (len(a[0])+1) != len(a[1]): raise Exception('BR a_ops tuple lengths not compatible.') coupled_ops.append(kk+coupled_offset) coupled_lengths.append(len(a[0])) coupled_spectra.append(a[1][0]) coupled_offset += len(a[0])-1 if isinstance(a[1][0],Cubic_Spline): spline_count[1] += 1 for nn, _a in enumerate(a[0]): A_terms.append(_a.full('f')) A_td_terms.append(a[1][nn+1]) if isinstance(a[1][nn+1],Cubic_Spline): CA_obj.append(a[1][nn+1].coeffs) spline_count[1] += 1 else: raise Exception('Invalid bath-coupling specification.') string_list = [] for kk,_ in enumerate(H_td_terms): string_list.append("H_terms[{0}]".format(kk)) for kk,_ in enumerate(H_obj): string_list.append("H_obj[{0}]".format(kk)) for kk,_ in enumerate(C_td_terms): string_list.append("C_terms[{0}]".format(kk)) for kk,_ in enumerate(CA_obj): string_list.append("CA_obj[{0}]".format(kk)) for kk,_ in enumerate(A_td_terms): string_list.append("A_terms[{0}]".format(kk)) #Add nrows to parameters string_list.append('nrows') for name, value in args.items(): if isinstance(value, np.ndarray): raise TypeError('NumPy arrays not valid args for BR solver.') else: string_list.append(str(value)) parameter_string = ",".join(string_list) if verbose: print('BR prep time:', time.time()-_prep_time) # # generate and compile new cython code if necessary # if not options.rhs_reuse or config.tdfunc is None: if options.rhs_filename is None: config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num) else: config.tdname = opt.rhs_filename if verbose: _st = time.time() cgen = BR_Codegen(h_terms=len(H_terms), h_td_terms=H_td_terms, h_obj=H_obj, c_terms=len(C_terms), c_td_terms=C_td_terms, c_obj=CA_obj, a_terms=len(A_terms), a_td_terms=A_td_terms, spline_count=spline_count, coupled_ops = coupled_ops, coupled_lengths = coupled_lengths, coupled_spectra = coupled_spectra, config=config, sparse=False, use_secular = use_secular, sec_cutoff = sec_cutoff, args=args, use_openmp=options.use_openmp, omp_thresh=qset.openmp_thresh if qset.has_openmp else None, omp_threads=options.num_cpus, atol=tol) cgen.generate(config.tdname + ".pyx") code = compile('from ' + config.tdname + ' import cy_td_ode_rhs', '<string>', 'exec') exec(code, globals()) config.tdfunc = cy_td_ode_rhs if verbose: print('BR compile time:', time.time()-_st) initial_vector = mat2vec(rho0.full()).ravel() _ode = scipy.integrate.ode(config.tdfunc) code = compile('_ode.set_f_params(' + parameter_string + ')', '<string>', 'exec') _ode.set_integrator('zvode', method=options.method, order=options.order, atol=options.atol, rtol=options.rtol, nsteps=options.nsteps, first_step=options.first_step, min_step=options.min_step, max_step=options.max_step) _ode.set_initial_value(initial_vector, tlist[0]) exec(code, locals()) # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "brmesolve" output.times = tlist if options.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] options.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # if type(progress_bar)==BaseProgressBar and verbose: _run_time = time.time() progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not _ode.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if options.store_states or expt_callback: rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1]) if options.store_states: output.states.append(Qobj(rho, isherm=True)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], _ode.y, 0) else: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], _ode.y, 1) if t_idx < n_tsteps - 1: _ode.integrate(_ode.t + dt[t_idx]) progress_bar.finished() if type(progress_bar)==BaseProgressBar and verbose: print('BR runtime:', time.time()-_run_time) if (not options.rhs_reuse) and (config.tdname is not None): _cython_build_cleanup(config.tdname) if options.store_final_state: rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1]) output.final_state = Qobj(rho, dims=rho0.dims, isherm=True) return output
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None): """ Internal function for solving ODEs. """ # # prepare output array # n_tsteps = len(tlist) output = Result() output.solver = "sesolve" output.times = tlist if psi0.isunitary: oper_evo = True oper_n = dims[0][0] norm_dim_factor = np.sqrt(oper_n) else: oper_evo = False norm_dim_factor = 1.0 if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fallback on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") def get_curr_state_data(): if oper_evo: return vec2mat(r.y) else: return r.y # # start evolution # progress_bar.start(n_tsteps) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") # get the current state / oper data if needed cdata = None if opt.store_states or opt.normalize_output or n_expt_op > 0: cdata = get_curr_state_data() if opt.normalize_output: # cdata *= _get_norm_factor(cdata, oper_evo) cdata *= norm_dim_factor / la_norm(cdata) if oper_evo: r.set_initial_value(cdata.ravel('F'), r.t) else: r.set_initial_value(cdata, r.t) if opt.store_states: output.states.append(Qobj(cdata, dims=dims)) if expt_callback: # use callback method e_ops(t, Qobj(cdata, dims=dims)) for m in range(n_expt_op): output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, cdata, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: try: os.remove(config.tdname + ".pyx") except: pass if opt.store_final_state: cdata = get_curr_state_data() if opt.normalize_output: cdata *= norm_dim_factor / la_norm(cdata) output.final_state = Qobj(cdata, dims=dims) return output
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, state_norm_func=None, dims=None): """ Internal function for solving ODEs. """ # # prepare output array # n_tsteps = len(tlist) output = Result() output.solver = "sesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fallback on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if state_norm_func: data = r.y / state_norm_func(r.y) r.set_initial_value(data, r.t) if opt.store_states: output.states.append(Qobj(r.y, dims=dims)) if expt_callback: # use callback method e_ops(t, Qobj(r.y, dims=psi0.dims)) for m in range(n_expt_op): output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, r.y, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: try: os.remove(config.tdname + ".pyx") except: pass if opt.store_final_state: output.final_state = Qobj(r.y) return output
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None, options=None, floquet_basis=True): """ Solve the dynamics for the system using the Floquet-Markov master equation. """ if options is None: opt = Options() else: opt = options if opt.tidy: R.tidyup() # # check initial state # if isket(rho0): # Got a wave function as initial state: convert to density matrix. rho0 = ket2dm(rho0) # # prepare output array # n_tsteps = len(tlist) dt = tlist[1] - tlist[0] output = Result() output.solver = "fmmesolve" output.times = tlist if isinstance(e_ops, FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: output.states = [] else: if not f_modes_table: raise TypeError("The Floquet mode table has to be provided " + "when requesting expectation values.") output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # transform the initial density matrix to the eigenbasis: from # computational basis to the floquet basis # if ekets is not None: rho0 = rho0.transform(ekets) # # setup integrator # initial_vector = mat2vec(rho0.full()) r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(R.data.data, R.data.indices, R.data.indptr) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) # # start evolution # rho = Qobj(rho0) t_idx = 0 for t in tlist: if not r.successful(): break rho.data = vec2mat(r.y) if expt_callback: # use callback method if floquet_basis: e_ops(t, Qobj(rho)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) e_ops(t, Qobj(rho).transform(f_modes_t, True)) else: # calculate all the expectation values, or output rho if # no operators if n_expt_op == 0: if floquet_basis: output.states.append(Qobj(rho)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) output.states.append(Qobj(rho).transform(f_modes_t, True)) else: f_modes_table_t, T = f_modes_table f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) for m in range(0, n_expt_op): output.expect[m][t_idx] = \ expect(e_ops[m], rho.transform(f_modes_t, False)) r.integrate(r.t + dt) t_idx += 1 return output
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[], args={}, options=Options(), _safe_mode=True): """ Solve the dynamics for a system using the Bloch-Redfield master equation. .. note:: This solver does not currently support time-dependent Hamiltonians. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.Qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. a_ops : list of :class:`qutip.qobj` List of system operators that couple to bath degrees of freedom. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. c_ops : list of :class:`qutip.qobj` List of system collapse operators. args : *dictionary* Placeholder for future implementation, kept for API consistency. options : :class:`qutip.solver.Options` Options for the solver. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ if _safe_mode: _solver_safety_check(H, psi0, a_ops, e_ops, args) if not spectra_cb: # default to infinite temperature white noise spectra_cb = [lambda w: 1.0 for _ in a_ops] R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops) output = Result() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if e_ops: output.expect = results else: output.states = results return output
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None, options=Options(), sparse_dms=True, serial=False, ptrace_sel=[], calc_entropy=False): """ Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for problems without explicit time-dependence, and with some optional input: Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like ``list`` or ``array`` of collapse operators. e_ops : array_like ``list`` or ``array`` of operators for calculating expectation values. options : Options Instance of solver options. sparse_dms : boolean If averaged density matrices are returned, they will be stored as sparse (Compressed Row Format) matrices during computation if sparse_dms = True (default), and dense matrices otherwise. Dense matrices might be preferable for smaller systems. serial : boolean If True (default is False) the solver will not make use of the multiprocessing module, and simply run in serial. ptrace_sel: list This optional argument specifies a list of components to keep when returning a partially traced density matrix. This can be convenient for large systems where memory becomes a problem, but you are only interested in parts of the density matrix. calc_entropy : boolean If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged entropy over trajectories in results.entropy. This can be interpreted as a measure of entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310 (2012). Returns ------- results : Result Object storing all results from simulation. """ if ntraj is None: ntraj = options.ntraj if psi0.type != 'ket': raise Exception("Initial state must be a state vector.") config.options = options # set num_cpus to the value given in qutip.settings # if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full() else: config.psi0 = psi0.full() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set general items config.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): raise Exception("ntraj as list argument is not supported.") else: config.ntraj = ntraj # ntraj_list = [ntraj] # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps if not options.rhs_reuse: config.soft_reset() # no time dependence config.tflag = 0 # check for collapse operators if len(c_ops) > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config) # Load Monte Carlo class mc = _MC_class() # Set solver type if (options.method == 'adams'): mc.mf = 10 elif (options.method == 'bdf'): mc.mf = 22 else: if debug: print('Unrecognized method for ode solver, using "adams".') mc.mf = 10 # store ket and density matrix dims and shape for convenience mc.psi0_dims = psi0.dims mc.psi0_shape = psi0.shape mc.dm_dims = (psi0 * psi0.dag()).dims mc.dm_shape = (psi0 * psi0.dag()).shape # use sparse density matrices during computation? mc.sparse_dms = sparse_dms # run in serial? mc.serial_run = serial or (ntraj == 1) # are we doing a partial trace for returned states? mc.ptrace_sel = ptrace_sel if (ptrace_sel != []): if debug: print("ptrace_sel set to " + str(ptrace_sel)) print("We are using dense density matrices during computation " + "when performing partial trace. Setting sparse_dms = False") print("This feature is experimental.") mc.sparse_dms = False mc.dm_dims = psi0.ptrace(ptrace_sel).dims mc.dm_shape = psi0.ptrace(ptrace_sel).shape if (calc_entropy): if (ptrace_sel == []): if debug: print("calc_entropy = True, but ptrace_sel = []. Please set " + "a list of components to keep when calculating average" + " entropy of reduced density matrix in ptrace_sel. " + "Setting calc_entropy = False.") calc_entropy = False mc.calc_entropy = calc_entropy # construct output Result object output = Result() # Run mc.run() output.states = mc.sol.states output.expect = mc.sol.expect output.col_times = mc.sol.col_times output.col_which = mc.sol.col_which if (hasattr(mc.sol, 'entropy')): output.entropy = mc.sol.entropy output.solver = 'Fortran 90 Monte Carlo solver' # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj return output
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100): """ Solve the Schrodinger equation using the Floquet formalism. Parameters ---------- H : :class:`qutip.qobj.Qobj` System Hamiltonian, time-dependent with period `T`. psi0 : :class:`qutip.qobj` Initial state vector (ket). tlist : *list* / *array* list of times for :math:`t`. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. If this list is empty, the state vectors for each time in `tlist` will be returned instead of expectation values. T : float The period of the time-dependence of the hamiltonian. args : dictionary Dictionary with variables required to evaluate H. Tsteps : integer The number of time steps in one driving period for which to precalculate the Floquet modes. `Tsteps` should be an even number. Returns ------- output : :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an *array* of expectation values or an array of state vectors, for the times specified by `tlist`. """ if not T: # assume that tlist span exactly one period of the driving T = tlist[-1] # find the floquet modes for the time-dependent hamiltonian f_modes_0, f_energies = floquet_modes(H, T, args) # calculate the wavefunctions using the from the floquet modes f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, np.linspace(0, T, Tsteps + 1), H, T, args) # setup Result for storing the results output = Result() output.times = tlist output.solver = "fsesolve" if isinstance(e_ops, FunctionType): output.num_expect = 0 expt_callback = True elif isinstance(e_ops, list): output.num_expect = len(e_ops) expt_callback = False if output.num_expect == 0: output.states = [] else: output.expect = [] for op in e_ops: if op.isherm: output.expect.append(np.zeros(len(tlist))) else: output.expect.append(np.zeros(len(tlist), dtype=complex)) else: raise TypeError("e_ops must be a list Qobj or a callback function") psi0_fb = psi0.transform(f_modes_0) for t_idx, t in enumerate(tlist): f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) f_states_t = floquet_states(f_modes_t, f_energies, t) psi_t = psi0_fb.transform(f_states_t, True) if expt_callback: # use callback method e_ops(t, psi_t) else: # calculate all the expectation values, or output psi if # no expectation value operators where defined if output.num_expect == 0: output.states.append(Qobj(psi_t)) else: for e_idx, e in enumerate(e_ops): output.expect[e_idx][t_idx] = expect(e, psi_t) return output
def _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, opt, progress_bar, dims=None): """ Internal function for solving ODEs. """ # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # This function is made similar to mesolve's one for futur merging in a # solver class # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # prepare output array n_tsteps = len(tlist) output = Result() output.solver = "sesolve" output.times = tlist if psi0.isunitary: initial_vector = psi0.full().ravel('F') oper_evo = True size = psi0.shape[0] # oper_n = dims[0][0] # norm_dim_factor = np.sqrt(oper_n) elif psi0.isket: initial_vector = psi0.full().ravel() oper_evo = False # norm_dim_factor = 1.0 r = scipy.integrate.ode(func) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) if ode_args: r.set_f_params(*ode_args) r.set_initial_value(initial_vector, tlist[0]) e_ops_data = [] output.expect = [] if callable(e_ops): n_expt_op = 0 expt_callback = True output.num_expect = 1 elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False output.num_expect = n_expt_op if n_expt_op == 0: # fallback on storing states opt.store_states = True else: for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) if oper_evo: for e in e_ops: e_ops_data.append(e.dag().data) else: for e in e_ops: e_ops_data.append(e.data) else: raise TypeError("Expectation parameter must be a list or a function") if opt.store_states: output.states = [] if oper_evo: def get_curr_state_data(r): return vec2mat(r.y) else: def get_curr_state_data(r): return r.y # # start evolution # dt = np.diff(tlist) cdata = None progress_bar.start(n_tsteps) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") # get the current state / oper data if needed if opt.store_states or opt.normalize_output or n_expt_op > 0 or expt_callback: cdata = get_curr_state_data(r) if opt.normalize_output: # normalize per column if oper_evo: cdata /= la_norm(cdata, axis=0) #cdata *= norm_dim_factor / la_norm(cdata) r.set_initial_value(cdata.ravel('F'), r.t) else: #cdata /= la_norm(cdata) norm = normalize_inplace(cdata) if norm > 1e-12: # only reset the solver if state changed r.set_initial_value(cdata, r.t) else: r._y = cdata if opt.store_states: if oper_evo: fdata = dense2D_to_fastcsr_fmode(cdata, size, size) output.states.append(Qobj(fdata, dims=dims)) else: fdata = dense1D_to_fastcsr_ket(cdata) output.states.append(Qobj(fdata, dims=dims, fast='mc')) if expt_callback: # use callback method output.expect.append(e_ops(t, Qobj(cdata, dims=dims))) if oper_evo: for m in range(n_expt_op): output.expect[m][t_idx] = (e_ops_data[m] * cdata).trace() else: for m in range(n_expt_op): output.expect[m][t_idx] = cy_expect_psi( e_ops_data[m], cdata, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if opt.store_final_state: cdata = get_curr_state_data(r) if opt.normalize_output: cdata /= la_norm(cdata, axis=0) # cdata *= norm_dim_factor / la_norm(cdata) output.final_state = Qobj(cdata, dims=dims) return output
def get_result(self, ntraj=[]): # Store results in the Result object if not ntraj: ntraj = [self.num_traj] elif not isinstance(ntraj, list): ntraj = [ntraj] output = Result() output.solver = 'mcsolve' output.seeds = self.seeds options = self.options output.options = options if options.steady_state_average: output.states = self.steady_state elif options.average_states and options.store_states: output.states = self.states elif options.store_states: output.states = self.runs_states if options.store_final_state: if options.average_states: output.final_state = self.final_state else: output.final_state = self.runs_final_states if options.average_expect: output.expect = [self.expect_traj_avg(n) for n in ntraj] if len(output.expect) == 1: output.expect = output.expect[0] else: output.expect = self.runs_expect # simulation parameters output.times = self.tlist output.num_expect = self.e_ops.e_num output.num_collapse = len(self.ss.td_c_ops) output.ntraj = self.num_traj output.col_times = self.collapse_times output.col_which = self.collapse_which return output
def propagate(self, tlist, *, propagator, rho0=None, e_ops=None): """Propagates the system of the objective over the entire time grid Solve the dynamics for the `H` and `c_ops` of the objective. If `rho0` is not given, the `initial_state` will be propagated. This is similar to the :meth:`mesolve` method, but instead of using :func:`qutip.mesolve.mesolve`, the `propagate` function is used to go between points on the time grid. This function is the same as what is passed to :func:`.optimize_pulses`. The crucial difference between this and :meth:`mesolve` is in the time discretization convention. While :meth:`mesolve` uses piecewise-constant controls centered around the values in `tlist` (the control field switches in the middle between two points in `tlist`), :meth:`propagate` uses piecewise-constant controls on the intervals of `tlist` (the control field switches on the points in `tlist`) Comparing the result of :meth:`mesolve` and :meth:`propagate` allows to estimate the "time discretization error". If the error is significant, a shorter time step shoud be used. Returns: qutip.solver.Result: Result of the propagation, using the same structure as :meth:`mesolve`. """ if e_ops is None: e_ops = [] result = QutipSolverResult() result.solver = propagator.__name__ result.times = copy.copy(tlist) result.states = [] result.expect = [] result.num_expect = len(e_ops) result.num_collapse = len(self.c_ops) for _ in e_ops: result.expect.append([]) state = rho0 if state is None: state = self.initial_state if len(e_ops) == 0: result.states.append(state) else: for (i, oper) in enumerate(e_ops): result.expect[i].append(qutip.expect(oper, state)) controls = extract_controls([self]) pulses_mapping = extract_controls_mapping([self], controls) mapping = pulses_mapping[0] # "first objective" (dummy structure) tlist_midpoints = _tlist_midpoints(tlist) pulses = [ # defined on the tlist intervals control_onto_interval(control, tlist, tlist_midpoints) for control in controls ] for time_index in range(len(tlist) - 1): # index over intervals H = plug_in_pulse_values(self.H, pulses, mapping[0], time_index) c_ops = [ plug_in_pulse_values(c_op, pulses, mapping[ic + 1], time_index) for (ic, c_op) in enumerate(self.c_ops) ] dt = tlist[time_index + 1] - tlist[time_index] state = propagator(H, state, dt, c_ops) if len(e_ops) == 0: result.states.append(state) else: for (i, oper) in enumerate(e_ops): result.expect[i].append(qutip.expect(oper, state)) return result
def essolve(H, rho0, tlist, c_op_list, e_ops): """ Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by expressing the ODE as an exponential series. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). .. deprecated:: 4.6.0 :obj:`~essolve` will be removed in QuTiP 5. Please use :obj:`~qutip.sesolve` or :obj:`~qutip.mesolve` for general-purpose integration of the Schroedinger/Lindblad master equation. This will likely be faster than :obj:`~essolve` for you. Parameters ---------- H : qobj/function_type System Hamiltonian. rho0 : :class:`qutip.qobj` Initial state density matrix. tlist : list/array ``list`` of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` collapse operators. e_ops : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` operators for which to evaluate expectation values. Returns ------- expt_array : array Expectation values of wavefunctions/density matrices for the times specified in ``tlist``. .. note:: This solver does not support time-dependent Hamiltonians. """ n_expt_op = len(e_ops) n_tsteps = len(tlist) # Calculate the Liouvillian if (c_op_list is None or len(c_op_list) == 0) and isket(rho0): L = H else: L = liouvillian(H, c_op_list) es = ode2es(L, rho0) # evaluate the expectation values if n_expt_op == 0: results = [Qobj()] * n_tsteps else: results = np.zeros([n_expt_op, n_tsteps], dtype=complex) for n, e in enumerate(e_ops): results[n, :] = expect(e, esval(es, tlist)) data = Result() data.solver = "essolve" data.times = tlist data.expect = [np.real(results[n, :]) if e.isherm else results[n, :] for n, e in enumerate(e_ops)] return data
def krylovsolve( H: Qobj, psi0: Qobj, tlist: np.array, krylov_dim: int, e_ops=None, options=None, progress_bar: bool = None, sparse: bool = False, ): """ Time evolution of state vectors for time independent Hamiltonians. Evolve the state vector ("psi0") finding an approximation for the time evolution operator of Hamiltonian ("H") by obtaining the projection of the time evolution operator on a set of small dimensional Krylov subspaces (m << dim(H)). The output is either the state vector or the expectation values of supplied operators ("e_ops") at arbitrary points at ("tlist"). **Additional options** Additional options to krylovsolve can be set with the following: * "store_states": stores states even though expectation values are requested via the "e_ops" argument. * "store_final_state": store final state even though expectation values are requested via the "e_ops" argument. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. psi0 : :class: `qutip.Qobj` Initial state vector (ket). tlist : None / *list* / *array* List of times on which to evolve the initial state. If None, nothing happens but the code won't break. krylov_dim: int Dimension of Krylov approximation subspaces used for the time evolution approximation. e_ops : None / list of :class:`qutip.Qobj` Single operator or list of operators for which to evaluate expectation values. options : Options Instance of ODE solver options, as well as krylov parameters. atol: controls (approximately) the error desired for the final solution. (Defaults to 1e-8) nsteps: maximum number of krylov's internal number of Lanczos iterations. (Defaults to 10000) progress_bar : None / BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. sparse : bool (default False) Use np.array to represent system Hamiltonians. If True, scipy sparse arrays are used instead. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an *array* `result.expect` of expectation values for the times `tlist`, or an *array* `result.states` of state vectors corresponding to the times `tlist` [if `e_ops` is an empty list]. """ # check the physics _check_inputs(H, psi0, krylov_dim) # check extra inputs e_ops, e_ops_dict = _check_e_ops(e_ops) pbar = _check_progress_bar(progress_bar) # transform inputs type from Qobj to np.ndarray/csr_matrix if sparse: _H = H.get_data() # (fast_) csr_matrix else: _H = H.full().copy() # np.ndarray _psi = psi0.full().copy() _psi = _psi / np.linalg.norm(_psi) # create internal variable and output containers if options is None: options = Options(nsteps=10000) krylov_results = Result() krylov_results.solver = "krylovsolve" # handle particular cases of an empty tlist or single element n_tlist_steps = len(tlist) if n_tlist_steps < 1: return krylov_results if n_tlist_steps == 1: # if tlist has only one element, return it krylov_results = particular_tlist_or_happy_breakdown( tlist, n_tlist_steps, options, psi0, e_ops, krylov_results, pbar) # this will also raise a warning return krylov_results tf = tlist[-1] t0 = tlist[0] # optimization step using Lanczos, then reuse it for the first partition dim_m = krylov_dim krylov_basis, T_m = lanczos_algorithm(_H, _psi, krylov_dim=dim_m, sparse=sparse) # check if a happy breakdown occurred if T_m.shape[0] < krylov_dim + 1: if T_m.shape[0] == 1: # this means that the state does not evolve in time, it lies in a # symmetry of H subspace. Thus, theres no work to be done. krylov_results = particular_tlist_or_happy_breakdown( tlist, n_tlist_steps, options, psi0, e_ops, krylov_results, pbar, happy_breakdown=True, ) return krylov_results else: # no optimization is required, convergence is guaranteed. delta_t = tf - t0 n_timesteps = 1 else: # calculate optimal number of internal timesteps. delta_t = _optimize_lanczos_timestep_size(T_m, krylov_basis=krylov_basis, tlist=tlist, options=options) n_timesteps = int(ceil((tf - t0) / delta_t)) if n_timesteps >= options.nsteps: raise Exception( f"Optimization requires a number {n_timesteps} of lanczos iterations, " f"which exceeds the defined allowed number {options.nsteps}. This can " "be increased via the 'Options.nsteps' property.") partitions = _make_partitions(tlist=tlist, n_timesteps=n_timesteps) if progress_bar: pbar.start(len(partitions)) # update parameters regarding e_ops krylov_results, expt_callback, options, n_expt_op = _e_ops_outputs( krylov_results, e_ops, n_tlist_steps, options) # parameters for the lazy iteration evolve tlist psi_norm = np.linalg.norm(_psi) last_t = t0 for idx, partition in enumerate(partitions): evolved_states = _evolve_krylov_tlist( H=_H, psi0=_psi, krylov_dim=dim_m, tlist=partition, t0=last_t, psi_norm=psi_norm, krylov_basis=krylov_basis, T_m=T_m, sparse=sparse, ) if idx == 0: krylov_basis = None T_m = None t_idx = 0 _psi = evolved_states[-1] psi_norm = np.linalg.norm(_psi) last_t = partition[-1] # apply qobj to each evolved state, remove repeated tail elements qobj_evolved_states = [ Qobj(state, dims=psi0.dims) for state in evolved_states[1:-1] ] krylov_results = _expectation_values( e_ops, n_expt_op, expt_callback, krylov_results, qobj_evolved_states, partitions, idx, t_idx, options, ) t_idx += len(partition[1:-1]) pbar.update(idx) pbar.finished() if e_ops_dict: krylov_results.expect = { e: krylov_results.expect[n] for n, e in enumerate(e_ops_dict.keys()) } return krylov_results
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=None, progress_bar=True, map_func=None, map_kwargs=None): """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H = [H0, [H1, H1_coeff]] c_ops = [C0, [C1, C1_coeff]] args={'a': A, 'w': W} or in String (Cython) format we could write:: H = [H0, [H1, 'sin(w*t)']] c_ops = [C0, [C1, 'exp(-a*t)']] args={'a': A, 'w': W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. psi0 : :class:`qutip.Qobj` Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Options Instance of ODE solver options. progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Set to None to disable the progress bar. map_func: function A map function for managing the calls to the single-trajactory solver. map_kwargs: dictionary Optional keyword arguments to the map_func function. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. .. note:: It is possible to reuse the random number seeds from a previous run of the mcsolver by passing the output Result object seeds via the Options class, i.e. Options(seeds=prev_result.seeds). """ if debug: print(inspect.stack()[0][3]) if options is None: options = Options() if ntraj is None: ntraj = options.ntraj config.map_func = map_func if map_func is not None else parallel_map config.map_kwargs = map_kwargs if map_kwargs is not None else {} if not psi0.isket: raise Exception("Initial state must be a state vector.") if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None config.options = options if progress_bar: if progress_bar is True: config.progress_bar = TextProgressBar() else: config.progress_bar = progress_bar else: config.progress_bar = BaseProgressBar() # set num_cpus to the value given in qutip.settings if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus if config.options.num_cpus == 1: # fallback on serial_map if num_cpu == 1, since there is no # benefit of starting multiprocessing in this case config.map_func = serial_map # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full().ravel() else: config.psi0 = psi0.full().ravel() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set options on ouput states if config.options.steady_state_average: config.options.average_states = True # set general items config.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): config.ntraj = np.sort(ntraj)[-1] else: config.ntraj = ntraj # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING # -------------------------------------------- if not options.rhs_reuse or not config.tdfunc: # reset config collapse and time-dependence flags to default values config.soft_reset() # check for type of time-dependence (if any) time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc') c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2]) # set time_type for use in multiprocessing config.tflag = time_type # check for collapse operators if c_terms > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config) # compile and load cython functions if necessary _mc_func_load(config) else: # setup args for new parameters when rhs_reuse=True and tdfunc is given # string based if config.tflag in [1, 10, 11]: if any(args): config.c_args = [] arg_items = list(args.items()) for k in range(len(arg_items)): config.c_args.append(arg_items[k][1]) # function based elif config.tflag in [2, 3, 20, 22]: config.h_func_args = args # load monte carlo class mc = _MC(config) # Run the simulation mc.run() # Remove RHS cython file if necessary if not options.rhs_reuse and config.tdname: _cython_build_cleanup(config.tdname) # AFTER MCSOLVER IS DONE # ---------------------- # Store results in the Result object output = Result() output.solver = 'mcsolve' output.seeds = config.options.seeds # state vectors if (mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1): output.states = parfor(_mc_dm_avg, mc.psi_out.T) elif mc.psi_out is not None: output.states = mc.psi_out # expectation values if (mc.expect_out is not None and config.cflag and config.options.average_expect): # averaging if multiple trajectories if isinstance(ntraj, int): output.expect = [np.mean(np.array([mc.expect_out[nt][op] for nt in range(ntraj)], dtype=object), axis=0) for op in range(config.e_num)] elif isinstance(ntraj, (list, np.ndarray)): output.expect = [] for num in ntraj: expt_data = np.mean(mc.expect_out[:num], axis=0) data_list = [] if any([not op.isherm for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(np.real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list = [data for data in expt_data] output.expect.append(data_list) else: # no averaging for single trajectory or if average_expect flag # (Options) is off if mc.expect_out is not None: output.expect = mc.expect_out # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj output.col_times = mc.collapse_times_out output.col_which = mc.which_op_out if e_ops_dict: output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())} return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if opt.store_states or expt_callback: rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1]) if opt.store_states: output.states.append(Qobj(rho, isherm=True)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if (not opt.rhs_reuse) and (config.tdname is not None): _cython_build_cleanup(config.tdname) if opt.store_final_state: rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1]) output.final_state = Qobj(rho, dims=rho0.dims, isherm=True) return output
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[], args={}, options=Options()): """ Solve the dynamics for a system using the Bloch-Redfield master equation. .. note:: This solver does not currently support time-dependent Hamiltonians. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. rho0 / psi0: :class:`qutip.Qobj` Initial density matrix or state vector (ket). tlist : *list* / *array* List of times for :math:`t`. a_ops : list of :class:`qutip.qobj` List of system operators that couple to bath degrees of freedom. e_ops : list of :class:`qutip.qobj` / callback function List of operators for which to evaluate expectation values. c_ops : list of :class:`qutip.qobj` List of system collapse operators. args : *dictionary* Placeholder for future implementation, kept for API consistency. options : :class:`qutip.solver.Options` Options for the solver. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ if not spectra_cb: # default to infinite temperature white noise spectra_cb = [lambda w: 1.0 for _ in a_ops] R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops) output = Result() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options) if e_ops: output.expect = results else: output.states = results return output
def generic_ode_solve_checkpoint(r, rho0, tlist, e_ops, opt, progress_bar, save, subdir): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] e_ops_dict = e_ops e_ops = [e for e in e_ops_dict.values()] headings = [key for key in e_ops_dict.keys()] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") results_row = np.zeros(n_expt_op) # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dims = rho.dims dt = np.diff(tlist) end_time = tlist[-1] for t_idx, t in tqdm(enumerate(tlist)): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 0) results_row[m] = output.expect[m][t_idx] else: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 1) results_row[m] = output.expect[m][t_idx] results = pd.DataFrame(results_row).T results.columns = headings results.index = [t] results.index.name = 'times' if t == 0: first_row = True else: first_row = False if save: rho_checkpoint = Qobj(vec2mat(r.y)) rho_checkpoint.dims = dims if t_idx % 200 == 0: rho_c = rho_checkpoint.ptrace(0) with open('./cavity_states.pkl', 'ab') as f: pickle.dump(rho_c, f) with open('./results.csv', 'a') as file: results.to_csv(file, header=first_row, float_format='%.15f') qsave(rho_checkpoint, './state_checkpoint') save = True if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: _cython_build_cleanup(config.tdname) return output
def evolve_serial(self, args): if debug: print(inspect.stack()[0][3] + ":" + str(os.getpid())) # run ntraj trajectories for one process via fortran # get args queue, ntraj, instanceno, rngseed = args # initialize the problem in fortran _init_tlist() _init_psi0() if (self.ptrace_sel != []): _init_ptrace_stuff(self.ptrace_sel) _init_hamilt() if (config.c_num != 0): _init_c_ops() if (config.e_num != 0): _init_e_ops() # set options qtf90.qutraj_run.n_c_ops = config.c_num qtf90.qutraj_run.n_e_ops = config.e_num qtf90.qutraj_run.ntraj = ntraj qtf90.qutraj_run.unravel_type = self.unravel_type qtf90.qutraj_run.average_states = config.options.average_states qtf90.qutraj_run.average_expect = config.options.average_expect qtf90.qutraj_run.init_result(config.psi0_shape[0], config.options.atol, config.options.rtol, mf=self.mf, norm_steps=config.norm_steps, norm_tol=config.norm_tol) # set optional arguments qtf90.qutraj_run.order = config.options.order qtf90.qutraj_run.nsteps = config.options.nsteps qtf90.qutraj_run.first_step = config.options.first_step qtf90.qutraj_run.min_step = config.options.min_step qtf90.qutraj_run.max_step = config.options.max_step qtf90.qutraj_run.norm_steps = config.options.norm_steps qtf90.qutraj_run.norm_tol = config.options.norm_tol # use sparse density matrices during computation? qtf90.qutraj_run.rho_return_sparse = self.sparse_dms # calculate entropy of reduced density matrice? qtf90.qutraj_run.calc_entropy = self.calc_entropy # run show_progress = 1 if debug else 0 qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress) # construct Result instance sol = Result() sol.ntraj = ntraj # sol.col_times = qtf90.qutraj_run.col_times # sol.col_which = qtf90.qutraj_run.col_which-1 sol.col_times, sol.col_which = self.get_collapses(ntraj) if (config.e_num == 0): sol.states = self.get_states(len(config.tlist), ntraj) else: sol.expect = self.get_expect(len(config.tlist), ntraj) if (self.calc_entropy): sol.entropy = self.get_entropy(len(config.tlist)) if (not self.serial_run): # put to queue queue.put(sol) queue.join() # deallocate stuff # finalize() return sol
def run(self, rho0, tlist): """ Function to solve for an open quantum system using the HEOM model. Parameters ---------- rho0 : Qobj Initial state (density matrix) of the system. tlist : list Time over which system evolves. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. """ start_run = timeit.default_timer() sup_dim = self._sup_dim stats = self.stats r = self._ode if not self._configured: raise RuntimeError("Solver must be configured before it is run") if stats: ss_conf = stats.sections.get('config') if ss_conf is None: raise RuntimeError("No config section for solver stats") ss_run = stats.sections.get('run') if ss_run is None: ss_run = stats.add_section('run') # Set up terms of the matsubara and tanimura boundaries output = Result() output.solver = "hsolve" output.times = tlist output.states = [] if stats: start_init = timeit.default_timer() output.states.append(Qobj(rho0)) rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes rho0_he = np.zeros([sup_dim * self._N_he], dtype=complex) rho0_he[:sup_dim] = rho0_flat r.set_initial_value(rho0_he, tlist[0]) if stats: stats.add_timing('initialize', timeit.default_timer() - start_init, ss_run) start_integ = timeit.default_timer() dt = np.diff(tlist) n_tsteps = len(tlist) for t_idx, t in enumerate(tlist): if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims) output.states.append(rho) if stats: time_now = timeit.default_timer() stats.add_timing('integrate', time_now - start_integ, ss_run) if ss_run.total_time is None: ss_run.total_time = time_now - start_run else: ss_run.total_time += time_now - start_run stats.total_time = ss_conf.total_time + ss_run.total_time return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: try: os.remove(config.tdname + ".pyx") except: pass if opt.store_final_state: rho.data = vec2mat(r.y) output.final_state = Qobj(rho) return output
def _generic_ode_solve(func, ode_args, rho0, tlist, e_ops, opt, progress_bar, dims=None): """ Internal function for solving ME. Calculate the required expectation values or invoke callback function at each time step. """ # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # This function is made similar to sesolve's one for futur merging in a # solver class # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # prepare output array n_tsteps = len(tlist) output = Result() output.solver = "mesolve" output.times = tlist size = rho0.shape[0] initial_vector = rho0.full().ravel('F') r = scipy.integrate.ode(func) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps, first_step=opt.first_step, min_step=opt.min_step, max_step=opt.max_step) if ode_args: r.set_f_params(*ode_args) r.set_initial_value(initial_vector, tlist[0]) e_ops_data = [] output.expect = [] if callable(e_ops): n_expt_op = 0 expt_callback = True output.num_expect = 1 elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False output.num_expect = n_expt_op if n_expt_op == 0: # fall back on storing states opt.store_states = True else: for op in e_ops: e_ops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") if opt.store_states: output.states = [] def get_curr_state_data(r): return vec2mat(r.y) # # start evolution # dt = np.diff(tlist) cdata = None progress_bar.start(n_tsteps) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if opt.store_states or expt_callback: cdata = get_curr_state_data(r) if opt.store_states: if issuper(rho0): fdata = dense2D_to_fastcsr_fmode(cdata, size, size) output.states.append(Qobj(fdata, dims=dims)) else: fdata = dense2D_to_fastcsr_fmode(cdata, size, size) output.states.append(Qobj(fdata, dims=dims, fast="mc-dm")) if expt_callback: # use callback method output.expect.append(e_ops(t, Qobj(cdata, dims=dims))) for m in range(n_expt_op): output.expect[m][t_idx] = expect_rho_vec(e_ops_data[m], r.y, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if opt.store_final_state: cdata = get_curr_state_data(r) output.final_state = Qobj(cdata, dims=dims, isherm=True) return output
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=Options()): """Monte-Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H=[H0,[H1,H1_coeff]] c_op_list=[C0,[C1,C1_coeff]] args={'a':A,'w':W} or in String (Cython) format we could write:: H=[H0,[H1,'sin(w*t)']] c_op_list=[C0,[C1,'exp(-a*t)']] args={'a':A,'w':W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Options Instance of ODE solver options. Returns ------- results : Result Object storing all results from simulation. """ if debug: print(inspect.stack()[0][3]) if ntraj is None: ntraj = options.ntraj if not psi0.isket: raise Exception("Initial state must be a state vector.") if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None config.options = options if isinstance(ntraj, list): config.progress_bar = TextProgressBar(max(ntraj)) else: config.progress_bar = TextProgressBar(ntraj) # set num_cpus to the value given in qutip.settings if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full().ravel() else: config.psi0 = psi0.full().ravel() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set options on ouput states if config.options.steady_state_average: config.options.average_states = True # set general items config.tlist = tlist if isinstance(ntraj, (list, ndarray)): config.ntraj = sort(ntraj)[-1] else: config.ntraj = ntraj # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # ---------------------------------------------- # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING # ---------------------------------------------- if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.soft_reset() # check for type of time-dependence (if any) time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc") h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2]) c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2]) # set time_type for use in multiprocessing config.tflag = time_type # check for collapse operators if c_terms > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config) # compile and load cython functions if necessary _mc_func_load(config) else: # setup args for new parameters when rhs_reuse=True and tdfunc is given # string based if config.tflag in array([1, 10, 11]): if any(args): config.c_args = [] arg_items = args.items() for k in range(len(args)): config.c_args.append(arg_items[k][1]) # function based elif config.tflag in array([2, 3, 20, 22]): config.h_func_args = args # load monte-carlo class mc = _MC_class(config) # RUN THE SIMULATION mc.run() # remove RHS cython file if necessary if not options.rhs_reuse and config.tdname: try: os.remove(config.tdname + ".pyx") except: pass # AFTER MCSOLVER IS DONE -------------------------------------- # ------- COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT -------------- output = Result() output.solver = "mcsolve" # state vectors if mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1: output.states = parfor(_mc_dm_avg, mc.psi_out.T) elif mc.psi_out is not None: output.states = mc.psi_out # expectation values elif mc.expect_out is not None and config.cflag and config.options.average_expect: # averaging if multiple trajectories if isinstance(ntraj, int): output.expect = [mean([mc.expect_out[nt][op] for nt in range(ntraj)], axis=0) for op in range(config.e_num)] elif isinstance(ntraj, (list, ndarray)): output.expect = [] for num in ntraj: expt_data = mean(mc.expect_out[:num], axis=0) data_list = [] if any([not op.isherm for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(np.real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list = [data for data in expt_data] output.expect.append(data_list) else: # no averaging for single trajectory or if average_states flag # (Options) is off if mc.expect_out is not None: output.expect = mc.expect_out # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj output.col_times = mc.collapse_times_out output.col_which = mc.which_op_out if e_ops_dict: output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())} return output
def _gather(sols): # gather list of Result objects, sols, into one. sol = Result() # sol = sols[0] ntraj = sum([a.ntraj for a in sols]) sol.col_times = np.zeros((ntraj), dtype=np.ndarray) sol.col_which = np.zeros((ntraj), dtype=np.ndarray) sol.col_times[0:sols[0].ntraj] = sols[0].col_times sol.col_which[0:sols[0].ntraj] = sols[0].col_which sol.states = np.array(sols[0].states, dtype=object) sol.expect = np.array(sols[0].expect) if (hasattr(sols[0], 'entropy')): sol.entropy = np.array(sols[0].entropy) sofar = 0 for j in range(1, len(sols)): sofar = sofar + sols[j - 1].ntraj sol.col_times[sofar:sofar + sols[j].ntraj] = (sols[j].col_times) sol.col_which[sofar:sofar + sols[j].ntraj] = (sols[j].col_which) if (config.e_num == 0): if (config.options.average_states): # collect states, averaged over trajectories sol.states += np.array(sols[j].states) else: # collect states, all trajectories sol.states = np.vstack((sol.states, np.array(sols[j].states))) else: if (config.options.average_expect): # collect expectation values, averaged for i in range(config.e_num): sol.expect[i] += np.array(sols[j].expect[i]) else: # collect expectation values, all trajectories sol.expect = np.vstack((sol.expect, np.array(sols[j].expect))) if (hasattr(sols[j], 'entropy')): if (config.options.average_states or config.options.average_expect): # collect entropy values, averaged sol.entropy += np.array(sols[j].entropy) else: # collect entropy values, all trajectories sol.entropy = np.vstack( (sol.entropy, np.array(sols[j].entropy))) if (config.options.average_states or config.options.average_expect): if (config.e_num == 0): sol.states = sol.states / len(sols) else: sol.expect = list(sol.expect / len(sols)) inds = np.where(config.e_ops_isherm)[0] for jj in inds: sol.expect[jj] = np.real(sol.expect[jj]) if (hasattr(sols[0], 'entropy')): sol.entropy = sol.entropy / len(sols) # convert sol.expect array to list and fix dtypes of arrays if (not config.options.average_expect) and config.e_num != 0: temp = [list(sol.expect[ii]) for ii in range(ntraj)] for ii in range(ntraj): for jj in np.where(config.e_ops_isherm)[0]: temp[ii][jj] = np.real(temp[ii][jj]) sol.expect = temp # convert to list/array to be consistent with qutip mcsolve sol.states = list(sol.states) return sol
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None, **kwargs): """ Solve time-evolution using the Transfer Tensor Method, based on a set of precomputed dynamical maps. Parameters ---------- dynmaps : list of :class:`qutip.Qobj` List of precomputed dynamical maps (superoperators), or a callback function that returns the superoperator at a given time. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : array_like list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`. Must be uniformily spaced. e_ops : list of :class:`qutip.Qobj` / callback function single operator or list of operators for which to evaluate expectation values. learningtimes : array_like list of times :math:`t_k` for which we have knowledge of the dynamical maps :math:`E(t_k)`. tensors : array_like optional list of precomputed tensors :math:`T_k` kwargs : dictionary Optional keyword arguments. See :class:`qutip.nonmarkov.ttm.TTMSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ opt = TTMSolverOptions(dynmaps=dynmaps, times=times, learningtimes=learningtimes, **kwargs) diff = None if isket(rho0): rho0 = ket2dm(rho0) output = Result() e_sops_data = [] if callable(e_ops): n_expt_op = 0 expt_callback = True else: try: tmp = e_ops[:] del tmp n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states opt.store_states = True for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(len(times))) else: output.expect.append(np.zeros(len(times), dtype=complex)) except TypeError: raise TypeError("Argument 'e_ops' should be a callable or" + "list-like.") if tensors is None: tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt) rho0vec = operator_to_vector(rho0) K = len(tensors) states = [rho0vec] for n in range(1, len(times)): states.append(None) for k in range(n): if n-k < K: states[-1] += tensors[n-k]*states[k] for i, r in enumerate(states): if opt.store_states or expt_callback: if r.type == 'operator-ket': states[i] = vector_to_operator(r) else: states[i] = r if expt_callback: # use callback method e_ops(times[i], states[i]) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0) else: output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1) output.solver = "ttmsolve" output.times = times output.ttmconvergence = diff if opt.store_states: output.states = states return output
def run(self, rho0, tlist): """ Function to solve for an open quantum system using the HEOM model. Parameters ---------- rho0 : Qobj Initial state (density matrix) of the system. tlist : list Time over which system evolves. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. """ start_run = timeit.default_timer() sup_dim = self._sup_dim stats = self.stats r = self._ode if not self._configured: raise RuntimeError("Solver must be configured before it is run") if stats: ss_conf = stats.sections.get('config') if ss_conf is None: raise RuntimeError("No config section for solver stats") ss_run = stats.sections.get('run') if ss_run is None: ss_run = stats.add_section('run') # Set up terms of the matsubara and tanimura boundaries output = Result() output.solver = "hsolve" output.times = tlist output.states = [] if stats: start_init = timeit.default_timer() output.states.append(Qobj(rho0)) rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex) rho0_he[:sup_dim] = rho0_flat r.set_initial_value(rho0_he, tlist[0]) if stats: stats.add_timing('initialize', timeit.default_timer() - start_init, ss_run) start_integ = timeit.default_timer() dt = np.diff(tlist) n_tsteps = len(tlist) for t_idx, t in enumerate(tlist): if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims) output.states.append(rho) if stats: time_now = timeit.default_timer() stats.add_timing('integrate', time_now - start_integ, ss_run) if ss_run.total_time is None: ss_run.total_time = time_now - start_run else: ss_run.total_time += time_now - start_run stats.total_time = ss_conf.total_time + ss_run.total_time return output
def _ssepdpsolve_generic(sso, options, progress_bar): """ For internal use. See ssepdpsolve. """ if debug: logger.debug(inspect.stack()[0][3]) N_store = len(sso.times) N_substeps = sso.nsubsteps dt = (sso.times[1] - sso.times[0]) / N_substeps nt = sso.ntraj data = Result() data.solver = "sepdpsolve" data.times = sso.tlist data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex) data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex) data.jump_times = [] data.jump_op_idx = [] # effective hamiltonian for deterministic part Heff = sso.H for c in sso.c_ops: Heff += -0.5j * c.dag() * c progress_bar.start(sso.ntraj) for n in range(sso.ntraj): progress_bar.update(n) psi_t = sso.state0.full().ravel() states_list, jump_times, jump_op_idx = \ _ssepdpsolve_single_trajectory(data, Heff, dt, sso.times, N_store, N_substeps, psi_t, sso.state0.dims, sso.c_ops, sso.e_ops) data.states.append(states_list) data.jump_times.append(jump_times) data.jump_op_idx.append(jump_op_idx) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum([data.states[m][n] for m in range(nt)]).unit() for n in range(len(data.times))] # average data.expect = data.expect / nt # standard error if nt > 1: data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1)) else: data.se = None # convert complex data to real if hermitian data.expect = [np.real(data.expect[n, :]) if e.isherm else data.expect[n, :] for n, e in enumerate(sso.e_ops)] return data
def brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={}, use_secular=True, sec_cutoff = 0.1, tol=qset.atol, spectra_cb=None, options=None, progress_bar=None, _safe_mode=True, verbose=False): """ Solves for the dynamics of a system using the Bloch-Redfield master equation, given an input Hamiltonian, Hermitian bath-coupling terms and their associated spectrum functions, as well as possible Lindblad collapse operators. For time-independent systems, the Hamiltonian must be given as a Qobj, whereas the bath-coupling terms (a_ops), must be written as a nested list of operator - spectrum function pairs, where the frequency is specified by the `w` variable. *Example* a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse operators (c_ops), can be specified in the QuTiP string-based time-dependent format. For the a_op spectra, the frequency variable must be `w`, and the string cannot contain any other variables other than the possibility of having a time-dependence through the time variable `t`: *Example* a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']] It is also possible to use Cubic_Spline objects for time-dependence. In the case of a_ops, Cubic_Splines must be passed as a tuple: *Example* a_ops = [ [a+a.dag(), ( f(w), g(t)] ] where f(w) and g(t) are strings or Cubic_spline objects for the bath spectrum and time-dependence, respectively. Finally, if one has bath-couplimg terms of the form H = f(t)*a + conj[f(t)]*a.dag(), then the correct input format is *Example* a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],... ] where f(w) is the spectrum of the operators while g1(t) and g2(t) are the time-dependence of the operators `a` and `a.dag()`, respectively Parameters ---------- H : Qobj / list System Hamiltonian given as a Qobj or nested list in string-based format. psi0: Qobj Initial density matrix or state vector (ket). tlist : array_like List of times for evaluating evolution a_ops : list Nested list of Hermitian system operators that couple to the bath degrees of freedom, along with their associated spectra. e_ops : list List of operators for which to evaluate expectation values. c_ops : list List of system collapse operators, or nested list in string-based format. args : dict Placeholder for future implementation, kept for API consistency. use_secular : bool {True} Use secular approximation when evaluating bath-coupling terms. sec_cutoff : float {0.1} Cutoff for secular approximation. tol : float {qutip.setttings.atol} Tolerance used for removing small values after basis transformation. spectra_cb : list DEPRECIATED. Do not use. options : :class:`qutip.solver.Options` Options for the solver. progress_bar : BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ _prep_time = time.time() #This allows for passing a list of time-independent Qobj #as allowed by mesolve if isinstance(H, list): if np.all([isinstance(h,Qobj) for h in H]): H = sum(H) if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None if not (spectra_cb is None): warnings.warn("The use of spectra_cb is depreciated.", DeprecationWarning) _a_ops = [] for kk, a in enumerate(a_ops): _a_ops.append([a,spectra_cb[kk]]) a_ops = _a_ops if _safe_mode: _solver_safety_check(H, psi0, a_ops+c_ops, e_ops, args) # check for type (if any) of time-dependent inputs _, n_func, n_str = _td_format_check(H, a_ops+c_ops) if progress_bar is None: progress_bar = BaseProgressBar() elif progress_bar is True: progress_bar = TextProgressBar() if options is None: options = Options() if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.reset() #check if should use OPENMP check_use_openmp(options) if n_str == 0: R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb=None, c_ops=c_ops, use_secular=use_secular, sec_cutoff=sec_cutoff) output = Result() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options, progress_bar=progress_bar) if e_ops: output.expect = results else: output.states = results return output elif n_str != 0 and n_func == 0: output = _td_brmesolve(H, psi0, tlist, a_ops=a_ops, e_ops=e_ops, c_ops=c_ops, args=args, use_secular=use_secular, sec_cutoff=sec_cutoff, tol=tol, options=options, progress_bar=progress_bar, _safe_mode=_safe_mode, verbose=verbose, _prep_time=_prep_time) return output else: raise Exception('Cannot mix func and str formats.')
def _smepdpsolve_generic(sso, options, progress_bar): """ For internal use. See smepdpsolve. """ if debug: logger.debug(inspect.stack()[0][3]) N_store = len(sso.times) N_substeps = sso.nsubsteps dt = (sso.times[1] - sso.times[0]) / N_substeps nt = sso.ntraj data = Result() data.solver = "smepdpsolve" data.times = sso.times data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex) data.jump_times = [] data.jump_op_idx = [] # Liouvillian for the deterministic part. # needs to be modified for TD systems L = liouvillian(sso.H, sso.c_ops) progress_bar.start(sso.ntraj) for n in range(sso.ntraj): progress_bar.update(n) rho_t = mat2vec(sso.rho0.full()).ravel() states_list, jump_times, jump_op_idx = \ _smepdpsolve_single_trajectory(data, L, dt, sso.times, N_store, N_substeps, rho_t, sso.rho0.dims, sso.c_ops, sso.e_ops) data.states.append(states_list) data.jump_times.append(jump_times) data.jump_op_idx.append(jump_op_idx) progress_bar.finished() # average density matrices if options.average_states and np.any(data.states): data.states = [sum([data.states[m][n] for m in range(nt)]).unit() for n in range(len(data.times))] # average data.expect = data.expect / sso.ntraj # standard error if nt > 1: data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1)) else: data.se = None return data
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None): """ Internal function for solving ODEs. """ if opt.normalize_output: state_norm_func = norm else: state_norm_func = None # # prepare output array # n_tsteps = len(tlist) output = Result() output.solver = "sesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fallback on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if state_norm_func: data = r.y / state_norm_func(r.y) r.set_initial_value(data, r.t) if opt.store_states: output.states.append(Qobj(r.y, dims=dims)) if expt_callback: # use callback method e_ops(t, Qobj(r.y, dims=psi0.dims)) for m in range(n_expt_op): output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, r.y, e_ops[m].isherm) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: try: os.remove(config.tdname + ".pyx") except: pass if opt.store_final_state: output.final_state = Qobj(r.y, dims=dims) return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): break if opt.store_states or expt_callback: rho.data = vec2mat(r.y) if opt.store_states: output.states.append(Qobj(rho)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if not opt.rhs_reuse and config.tdname is not None: try: os.remove(config.tdname + ".pyx") except: pass if opt.store_final_state: rho.data = vec2mat(r.y) output.final_state = Qobj(rho) return output
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar): """ Internal function for solving ME. Solve an ODE which solver parameters already setup (r). Calculate the required expectation values or invoke callback function at each time step. """ # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "mesolve" output.times = tlist if opt.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] opt.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm and rho0.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not r.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if opt.store_states or expt_callback: rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1]) if opt.store_states: output.states.append(Qobj(rho, isherm=True)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 0) else: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], r.y, 1) if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) progress_bar.finished() if (not opt.rhs_reuse) and (config.tdname is not None): _cython_build_cleanup(config.tdname) if opt.store_final_state: rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1]) output.final_state = Qobj(rho, dims=rho0.dims, isherm=True) return output
def _td_brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={}, use_secular=True, sec_cutoff=0.1, tol=qset.atol, options=None, progress_bar=None, _safe_mode=True, verbose=False, _prep_time=0): if isket(psi0): rho0 = ket2dm(psi0) else: rho0 = psi0 nrows = rho0.shape[0] H_terms = [] H_td_terms = [] H_obj = [] A_terms = [] A_td_terms = [] C_terms = [] C_td_terms = [] CA_obj = [] spline_count = [0, 0] coupled_ops = [] coupled_lengths = [] coupled_spectra = [] if isinstance(H, Qobj): H_terms.append(H.full('f')) H_td_terms.append('1') else: for kk, h in enumerate(H): if isinstance(h, Qobj): H_terms.append(h.full('f')) H_td_terms.append('1') elif isinstance(h, list): H_terms.append(h[0].full('f')) if isinstance(h[1], Cubic_Spline): H_obj.append(h[1].coeffs) spline_count[0] += 1 H_td_terms.append(h[1]) else: raise Exception('Invalid Hamiltonian specification.') for kk, c in enumerate(c_ops): if isinstance(c, Qobj): C_terms.append(c.full('f')) C_td_terms.append('1') elif isinstance(c, list): C_terms.append(c[0].full('f')) if isinstance(c[1], Cubic_Spline): CA_obj.append(c[1].coeffs) spline_count[0] += 1 C_td_terms.append(c[1]) else: raise Exception('Invalid collapse operator specification.') coupled_offset = 0 for kk, a in enumerate(a_ops): if isinstance(a, list): if isinstance(a[0], Qobj): A_terms.append(a[0].full('f')) A_td_terms.append(a[1]) if isinstance(a[1], tuple): if not len(a[1]) == 2: raise Exception('Tuple must be len=2.') if isinstance(a[1][0], Cubic_Spline): spline_count[1] += 1 if isinstance(a[1][1], Cubic_Spline): spline_count[1] += 1 elif isinstance(a[0], tuple): if not isinstance(a[1], tuple): raise Exception('Invalid bath-coupling specification.') if (len(a[0]) + 1) != len(a[1]): raise Exception('BR a_ops tuple lengths not compatible.') coupled_ops.append(kk + coupled_offset) coupled_lengths.append(len(a[0])) coupled_spectra.append(a[1][0]) coupled_offset += len(a[0]) - 1 if isinstance(a[1][0], Cubic_Spline): spline_count[1] += 1 for nn, _a in enumerate(a[0]): A_terms.append(_a.full('f')) A_td_terms.append(a[1][nn + 1]) if isinstance(a[1][nn + 1], Cubic_Spline): CA_obj.append(a[1][nn + 1].coeffs) spline_count[1] += 1 else: raise Exception('Invalid bath-coupling specification.') string_list = [] for kk, _ in enumerate(H_td_terms): string_list.append("H_terms[{0}]".format(kk)) for kk, _ in enumerate(H_obj): string_list.append("H_obj[{0}]".format(kk)) for kk, _ in enumerate(C_td_terms): string_list.append("C_terms[{0}]".format(kk)) for kk, _ in enumerate(CA_obj): string_list.append("CA_obj[{0}]".format(kk)) for kk, _ in enumerate(A_td_terms): string_list.append("A_terms[{0}]".format(kk)) #Add nrows to parameters string_list.append('nrows') for name, value in args.items(): if isinstance(value, np.ndarray): raise TypeError('NumPy arrays not valid args for BR solver.') else: string_list.append(str(value)) parameter_string = ",".join(string_list) if verbose: print('BR prep time:', time.time() - _prep_time) # # generate and compile new cython code if necessary # if not options.rhs_reuse or config.tdfunc is None: if options.rhs_filename is None: config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num) else: config.tdname = opt.rhs_filename if verbose: _st = time.time() cgen = BR_Codegen( h_terms=len(H_terms), h_td_terms=H_td_terms, h_obj=H_obj, c_terms=len(C_terms), c_td_terms=C_td_terms, c_obj=CA_obj, a_terms=len(A_terms), a_td_terms=A_td_terms, spline_count=spline_count, coupled_ops=coupled_ops, coupled_lengths=coupled_lengths, coupled_spectra=coupled_spectra, config=config, sparse=False, use_secular=use_secular, sec_cutoff=sec_cutoff, args=args, use_openmp=options.use_openmp, omp_thresh=qset.openmp_thresh if qset.has_openmp else None, omp_threads=options.num_cpus, atol=tol) cgen.generate(config.tdname + ".pyx") code = compile('from ' + config.tdname + ' import cy_td_ode_rhs', '<string>', 'exec') exec(code, globals()) config.tdfunc = cy_td_ode_rhs if verbose: print('BR compile time:', time.time() - _st) initial_vector = mat2vec(rho0.full()).ravel() _ode = scipy.integrate.ode(config.tdfunc) code = compile('_ode.set_f_params(' + parameter_string + ')', '<string>', 'exec') _ode.set_integrator('zvode', method=options.method, order=options.order, atol=options.atol, rtol=options.rtol, nsteps=options.nsteps, first_step=options.first_step, min_step=options.min_step, max_step=options.max_step) _ode.set_initial_value(initial_vector, tlist[0]) exec(code, locals()) # # prepare output array # n_tsteps = len(tlist) e_sops_data = [] output = Result() output.solver = "brmesolve" output.times = tlist if options.store_states: output.states = [] if isinstance(e_ops, types.FunctionType): n_expt_op = 0 expt_callback = True elif isinstance(e_ops, list): n_expt_op = len(e_ops) expt_callback = False if n_expt_op == 0: # fall back on storing states output.states = [] options.store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: e_sops_data.append(spre(op).data) if op.isherm: output.expect.append(np.zeros(n_tsteps)) else: output.expect.append(np.zeros(n_tsteps, dtype=complex)) else: raise TypeError("Expectation parameter must be a list or a function") # # start evolution # if type(progress_bar) == BaseProgressBar and verbose: _run_time = time.time() progress_bar.start(n_tsteps) rho = Qobj(rho0) dt = np.diff(tlist) for t_idx, t in enumerate(tlist): progress_bar.update(t_idx) if not _ode.successful(): raise Exception("ODE integration error: Try to increase " "the allowed number of substeps by increasing " "the nsteps parameter in the Options class.") if options.store_states or expt_callback: rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1]) if options.store_states: output.states.append(Qobj(rho, isherm=True)) if expt_callback: # use callback method e_ops(t, rho) for m in range(n_expt_op): if output.expect[m].dtype == complex: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], _ode.y, 0) else: output.expect[m][t_idx] = expect_rho_vec( e_sops_data[m], _ode.y, 1) if t_idx < n_tsteps - 1: _ode.integrate(_ode.t + dt[t_idx]) progress_bar.finished() if type(progress_bar) == BaseProgressBar and verbose: print('BR runtime:', time.time() - _run_time) if (not options.rhs_reuse) and (config.tdname is not None): _cython_build_cleanup(config.tdname) if options.store_final_state: rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1]) output.final_state = Qobj(rho, dims=rho0.dims, isherm=True) return output
def _gather(sols): # gather list of Result objects, sols, into one. sol = Result() # sol = sols[0] ntraj = sum([a.ntraj for a in sols]) sol.col_times = np.zeros((ntraj), dtype=np.ndarray) sol.col_which = np.zeros((ntraj), dtype=np.ndarray) sol.col_times[0:sols[0].ntraj] = sols[0].col_times sol.col_which[0:sols[0].ntraj] = sols[0].col_which sol.states = np.array(sols[0].states) sol.expect = np.array(sols[0].expect) if (hasattr(sols[0], 'entropy')): sol.entropy = np.array(sols[0].entropy) sofar = 0 for j in range(1, len(sols)): sofar = sofar + sols[j - 1].ntraj sol.col_times[sofar:sofar + sols[j].ntraj] = ( sols[j].col_times) sol.col_which[sofar:sofar + sols[j].ntraj] = ( sols[j].col_which) if (config.e_num == 0): if (config.options.average_states): # collect states, averaged over trajectories sol.states += np.array(sols[j].states) else: # collect states, all trajectories sol.states = np.vstack((sol.states, np.array(sols[j].states))) else: if (config.options.average_expect): # collect expectation values, averaged for i in range(config.e_num): sol.expect[i] += np.array(sols[j].expect[i]) else: # collect expectation values, all trajectories sol.expect = np.vstack((sol.expect, np.array(sols[j].expect))) if (hasattr(sols[j], 'entropy')): if (config.options.average_states or config.options.average_expect): # collect entropy values, averaged sol.entropy += np.array(sols[j].entropy) else: # collect entropy values, all trajectories sol.entropy = np.vstack((sol.entropy, np.array(sols[j].entropy))) if (config.options.average_states or config.options.average_expect): if (config.e_num == 0): sol.states = sol.states / len(sols) else: sol.expect = list(sol.expect / len(sols)) inds = np.where(config.e_ops_isherm)[0] for jj in inds: sol.expect[jj] = np.real(sol.expect[jj]) if (hasattr(sols[0], 'entropy')): sol.entropy = sol.entropy / len(sols) # convert sol.expect array to list and fix dtypes of arrays if (not config.options.average_expect) and config.e_num != 0: temp = [list(sol.expect[ii]) for ii in range(ntraj)] for ii in range(ntraj): for jj in np.where(config.e_ops_isherm)[0]: temp[ii][jj] = np.real(temp[ii][jj]) sol.expect = temp # convert to list/array to be consistent with qutip mcsolve sol.states = list(sol.states) return sol
def brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={}, use_secular=True, sec_cutoff=0.1, tol=qset.atol, spectra_cb=None, options=None, progress_bar=None, _safe_mode=True, verbose=False): """ Solves for the dynamics of a system using the Bloch-Redfield master equation, given an input Hamiltonian, Hermitian bath-coupling terms and their associated spectrum functions, as well as possible Lindblad collapse operators. For time-independent systems, the Hamiltonian must be given as a Qobj, whereas the bath-coupling terms (a_ops), must be written as a nested list of operator - spectrum function pairs, where the frequency is specified by the `w` variable. *Example* a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse operators (c_ops), can be specified in the QuTiP string-based time-dependent format. For the a_op spectra, the frequency variable must be `w`, and the string cannot contain any other variables other than the possibility of having a time-dependence through the time variable `t`: *Example* a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']] It is also possible to use Cubic_Spline objects for time-dependence. In the case of a_ops, Cubic_Splines must be passed as a tuple: *Example* a_ops = [ [a+a.dag(), ( f(w), g(t)] ] where f(w) and g(t) are strings or Cubic_spline objects for the bath spectrum and time-dependence, respectively. Finally, if one has bath-couplimg terms of the form H = f(t)*a + conj[f(t)]*a.dag(), then the correct input format is *Example* a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],... ] where f(w) is the spectrum of the operators while g1(t) and g2(t) are the time-dependence of the operators `a` and `a.dag()`, respectively Parameters ---------- H : Qobj / list System Hamiltonian given as a Qobj or nested list in string-based format. psi0: Qobj Initial density matrix or state vector (ket). tlist : array_like List of times for evaluating evolution a_ops : list Nested list of Hermitian system operators that couple to the bath degrees of freedom, along with their associated spectra. e_ops : list List of operators for which to evaluate expectation values. c_ops : list List of system collapse operators, or nested list in string-based format. args : dict Placeholder for future implementation, kept for API consistency. use_secular : bool {True} Use secular approximation when evaluating bath-coupling terms. sec_cutoff : float {0.1} Cutoff for secular approximation. tol : float {qutip.setttings.atol} Tolerance used for removing small values after basis transformation. spectra_cb : list DEPRECIATED. Do not use. options : :class:`qutip.solver.Options` Options for the solver. progress_bar : BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Returns ------- result: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an array of expectation values, for operators given in e_ops, or a list of states for the times specified by `tlist`. """ _prep_time = time.time() #This allows for passing a list of time-independent Qobj #as allowed by mesolve if isinstance(H, list): if np.all([isinstance(h, Qobj) for h in H]): H = sum(H) if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None if not (spectra_cb is None): warnings.warn("The use of spectra_cb is depreciated.", DeprecationWarning) _a_ops = [] for kk, a in enumerate(a_ops): _a_ops.append([a, spectra_cb[kk]]) a_ops = _a_ops if _safe_mode: _solver_safety_check(H, psi0, a_ops + c_ops, e_ops, args) # check for type (if any) of time-dependent inputs _, n_func, n_str = _td_format_check(H, a_ops + c_ops) if progress_bar is None: progress_bar = BaseProgressBar() elif progress_bar is True: progress_bar = TextProgressBar() if options is None: options = Options() if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.reset() #check if should use OPENMP check_use_openmp(options) if n_str == 0: R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb=None, c_ops=c_ops, use_secular=use_secular, sec_cutoff=sec_cutoff) output = Result() output.solver = "brmesolve" output.times = tlist results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options, progress_bar=progress_bar) if e_ops: output.expect = results else: output.states = results return output elif n_str != 0 and n_func == 0: output = _td_brmesolve(H, psi0, tlist, a_ops=a_ops, e_ops=e_ops, c_ops=c_ops, args=args, use_secular=use_secular, sec_cutoff=sec_cutoff, tol=tol, options=options, progress_bar=progress_bar, _safe_mode=_safe_mode, verbose=verbose, _prep_time=_prep_time) return output else: raise Exception('Cannot mix func and str formats.')
def essolve(H, rho0, tlist, c_op_list, e_ops): """ Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by expressing the ODE as an exponential series. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). Parameters ---------- H : qobj/function_type System Hamiltonian. rho0 : :class:`qutip.qobj` Initial state density matrix. tlist : list/array ``list`` of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` collapse operators. e_ops : list of :class:`qutip.qobj` ``list`` of :class:`qutip.qobj` operators for which to evaluate expectation values. Returns ------- expt_array : array Expectation values of wavefunctions/density matrices for the times specified in ``tlist``. .. note:: This solver does not support time-dependent Hamiltonians. """ n_expt_op = len(e_ops) n_tsteps = len(tlist) # Calculate the Liouvillian if (c_op_list is None or len(c_op_list) == 0) and isket(rho0): L = H else: L = liouvillian(H, c_op_list) es = ode2es(L, rho0) # evaluate the expectation values if n_expt_op == 0: results = [Qobj()] * n_tsteps else: results = np.zeros([n_expt_op, n_tsteps], dtype=complex) for n, e in enumerate(e_ops): results[n, :] = expect(e, esval(es, tlist)) data = Result() data.solver = "essolve" data.times = tlist data.expect = [np.real(results[n, :]) if e.isherm else results[n, :] for n, e in enumerate(e_ops)] return data
def floquet_markov_mesolve( R, rho0, tlist, e_ops, options=None, floquet_basis=True, f_modes_0=None, f_modes_table_t=None, f_energies=None, T=None, ): """ Solve the dynamics for the system using the Floquet-Markov master equation. .. note:: It is important to understand in which frame and basis the results are returned here. Parameters ---------- R : array The Floquet-Markov master equation tensor `R`. rho0 : :class:`qutip.qobj` Initial density matrix. If ``f_modes_0`` is not passed, this density matrix is assumed to be in the Floquet picture. tlist : *list* / *array* list of times for :math:`t`. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. options : :class:`qutip.solver` options for the ODE solver. floquet_basis: bool, True If ``True``, states and expectation values will be returned in the Floquet basis. If ``False``, a transformation will be made to the computational basis; this will be in the lab frame if ``f_modes_table``, ``T` and ``f_energies`` are all supplied, or the interaction picture (defined purely be f_modes_0) if they are not. f_modes_0 : list of :class:`qutip.qobj` (kets), optional A list of initial Floquet modes, used to transform the given starting density matrix into the Floquet basis. If this is not passed, it is assumed that ``rho`` is already in the Floquet basis. f_modes_table_t : nested list of :class:`qutip.qobj` (kets), optional A lookup-table of Floquet modes at times precalculated by :func:`qutip.floquet.floquet_modes_table`. Necessary if ``floquet_basis`` is ``False`` and the transformation should be made back to the lab frame. f_energies : array_like of float, optional The precalculated Floquet quasienergies. Necessary if ``floquet_basis`` is ``False`` and the transformation should be made back to the lab frame. T : float, optional The time period of driving. Necessary if ``floquet_basis`` is ``False`` and the transformation should be made back to the lab frame. Returns ------- output : :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`, which contains either an *array* of expectation values or an array of state vectors, for the times specified by `tlist`. """ opt = options or Options() if opt.tidy: R.tidyup() rho0 = rho0.proj() if rho0.isket else rho0 # Prepare output object. dt = tlist[1] - tlist[0] output = Result() output.solver = "fmmesolve" output.times = tlist if isinstance(e_ops, FunctionType): expt_callback = True store_states = opt.store_states or False else: expt_callback = False try: e_ops = list(e_ops) except TypeError: raise TypeError("`e_ops` must be iterable or a function") from None n_expt_op = len(e_ops) if n_expt_op == 0: store_states = True else: output.expect = [] output.num_expect = n_expt_op for op in e_ops: dtype = np.float64 if op.isherm else np.complex128 output.expect.append(np.zeros(len(tlist), dtype=dtype)) store_states = opt.store_states or (n_expt_op == 0) if store_states: output.states = [] # Choose which frame transformations should be done on the initial and # evolved states. lab_lookup = [f_modes_table_t, f_energies, T] if (any(x is None for x in lab_lookup) and not all(x is None for x in lab_lookup)): warnings.warn( "if transformation back to the computational basis in the lab" "frame is desired, all of `f_modes_t`, `f_energies` and `T` must" "be supplied.") f_modes_table_t = f_energies = T = None # Initial state. if f_modes_0 is not None: rho0 = rho0.transform(f_modes_0) # Evolved states. if floquet_basis: def transform(rho, t): return rho elif f_modes_table_t is not None: # Lab frame, computational basis. def transform(rho, t): f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T) f_states_t = floquet_states(f_modes_t, f_energies, t) return rho.transform(f_states_t, True) elif f_modes_0 is not None: # Interaction picture, computational basis. def transform(rho, t): return rho.transform(f_modes_0, False) else: raise ValueError( "cannot transform out of the Floquet basis without some knowledge " "of the Floquet modes. Pass `f_modes_0`, or all of `f_modes_t`, " "`f_energies` and `T`.") # Setup integrator. initial_vector = mat2vec(rho0.full()) r = scipy.integrate.ode(cy_ode_rhs) r.set_f_params(R.data.data, R.data.indices, R.data.indptr) r.set_integrator('zvode', method=opt.method, order=opt.order, atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step) r.set_initial_value(initial_vector, tlist[0]) # Main evolution loop. for t_idx, t in enumerate(tlist): if not r.successful(): break rho = transform(Qobj(vec2mat(r.y), rho0.dims, rho0.shape), t) if expt_callback: e_ops(t, rho) else: for m, e_op in enumerate(e_ops): output.expect[m][t_idx] = expect(e_op, rho) if store_states: output.states.append(rho) r.integrate(r.t + dt) return output