コード例 #1
0
ファイル: piqs.py プロジェクト: jenshnielsen/qutip
 def solve(self, rho0, tlist, options=None):
     """
     Solve the ODE for the evolution of diagonal states and Hamiltonians.
     """
     if options is None:
         options = Options()
     output = Result()
     output.solver = "pisolve"
     output.times = tlist
     output.states = []
     output.states.append(Qobj(rho0))
     rhs_generate = lambda y, tt, M: M.dot(y)
     rho0_flat = np.diag(np.real(rho0.full()))
     L = self.coefficient_matrix()
     rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,))
     for r in rho_t[1:]:
         diag = np.diag(r)
         output.states.append(Qobj(diag))
     return output
コード例 #2
0
ファイル: bloch_redfield.py プロジェクト: ajgpitch/qutip
def _td_brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={},
                 use_secular=True, sec_cutoff=0.1,
                 tol=qset.atol, options=None, 
                 progress_bar=None,_safe_mode=True,
                 verbose=False,
                 _prep_time=0):
    
    if isket(psi0):
        rho0 = ket2dm(psi0)
    else:
        rho0 = psi0
    nrows = rho0.shape[0]
    
    H_terms = []
    H_td_terms = []
    H_obj = []
    A_terms = []
    A_td_terms = []
    C_terms = []
    C_td_terms = []
    CA_obj = []
    spline_count = [0,0]
    coupled_ops = []
    coupled_lengths = []
    coupled_spectra = []
    
    if isinstance(H, Qobj):
        H_terms.append(H.full('f'))
        H_td_terms.append('1')
    else: 
        for kk, h in enumerate(H):
            if isinstance(h, Qobj):
                H_terms.append(h.full('f'))
                H_td_terms.append('1')
            elif isinstance(h, list):
                H_terms.append(h[0].full('f'))
                if isinstance(h[1], Cubic_Spline):
                    H_obj.append(h[1].coeffs)
                    spline_count[0] += 1
                H_td_terms.append(h[1])
            else:
                raise Exception('Invalid Hamiltonian specification.')
    
            
    for kk, c in enumerate(c_ops):
        if isinstance(c, Qobj):
            C_terms.append(c.full('f'))
            C_td_terms.append('1')
        elif isinstance(c, list):
            C_terms.append(c[0].full('f'))
            if isinstance(c[1], Cubic_Spline):
                CA_obj.append(c[1].coeffs)
                spline_count[0] += 1
            C_td_terms.append(c[1])
        else:
            raise Exception('Invalid collapse operator specification.')
            
    coupled_offset = 0
    for kk, a in enumerate(a_ops):
        if isinstance(a, list):
            if isinstance(a[0], Qobj):
                A_terms.append(a[0].full('f'))
                A_td_terms.append(a[1])
                if isinstance(a[1], tuple):
                    if not len(a[1])==2:
                       raise Exception('Tuple must be len=2.')
                    if isinstance(a[1][0],Cubic_Spline):
                        spline_count[1] += 1
                    if isinstance(a[1][1],Cubic_Spline):
                        spline_count[1] += 1
            elif isinstance(a[0], tuple):
                if not isinstance(a[1], tuple):
                    raise Exception('Invalid bath-coupling specification.')
                if (len(a[0])+1) != len(a[1]):
                    raise Exception('BR a_ops tuple lengths not compatible.')
                
                coupled_ops.append(kk+coupled_offset)
                coupled_lengths.append(len(a[0]))
                coupled_spectra.append(a[1][0])
                coupled_offset += len(a[0])-1
                if isinstance(a[1][0],Cubic_Spline):
                    spline_count[1] += 1
                
                for nn, _a in enumerate(a[0]):
                    A_terms.append(_a.full('f'))
                    A_td_terms.append(a[1][nn+1])
                    if isinstance(a[1][nn+1],Cubic_Spline):
                        CA_obj.append(a[1][nn+1].coeffs)
                        spline_count[1] += 1
                                
        else:
            raise Exception('Invalid bath-coupling specification.')
            
    
    string_list = []
    for kk,_ in enumerate(H_td_terms):
        string_list.append("H_terms[{0}]".format(kk))
    for kk,_ in enumerate(H_obj):
        string_list.append("H_obj[{0}]".format(kk))
    for kk,_ in enumerate(C_td_terms):
        string_list.append("C_terms[{0}]".format(kk))
    for kk,_ in enumerate(CA_obj):
        string_list.append("CA_obj[{0}]".format(kk))
    for kk,_ in enumerate(A_td_terms):
        string_list.append("A_terms[{0}]".format(kk))
    #Add nrows to parameters
    string_list.append('nrows')
    for name, value in args.items():
        if isinstance(value, np.ndarray):
            raise TypeError('NumPy arrays not valid args for BR solver.')
        else:
            string_list.append(str(value))
    parameter_string = ",".join(string_list)
    
    if verbose:
        print('BR prep time:', time.time()-_prep_time)
    #
    # generate and compile new cython code if necessary
    #
    if not options.rhs_reuse or config.tdfunc is None:
        if options.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        if verbose:
            _st = time.time()
        cgen = BR_Codegen(h_terms=len(H_terms), 
                    h_td_terms=H_td_terms, h_obj=H_obj,
                    c_terms=len(C_terms), 
                    c_td_terms=C_td_terms, c_obj=CA_obj,
                    a_terms=len(A_terms), a_td_terms=A_td_terms,
                    spline_count=spline_count,
                    coupled_ops = coupled_ops,
                    coupled_lengths = coupled_lengths,
                    coupled_spectra = coupled_spectra,
                    config=config, sparse=False,
                    use_secular = use_secular,
                    sec_cutoff = sec_cutoff,
                    args=args,
                    use_openmp=options.use_openmp, 
                    omp_thresh=qset.openmp_thresh if qset.has_openmp else None,
                    omp_threads=options.num_cpus, 
                    atol=tol)
        
        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs
        if verbose:
            print('BR compile time:', time.time()-_st)
    initial_vector = mat2vec(rho0.full()).ravel()
    
    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')',
                    '<string>', 'exec')
    _ode.set_integrator('zvode', method=options.method, 
                    order=options.order, atol=options.atol, 
                    rtol=options.rtol, nsteps=options.nsteps,
                    first_step=options.first_step, 
                    min_step=options.min_step,
                    max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())
    
    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar)==BaseProgressBar and verbose:
        _run_time = time.time()
    
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()
    
    if type(progress_bar)==BaseProgressBar and verbose:
        print('BR runtime:', time.time()-_run_time)

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)
    
    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #3
0
ファイル: sesolve.py プロジェクト: ajgpitch/qutip
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        oper_evo = True
        oper_n = dims[0][0]
        norm_dim_factor = np.sqrt(oper_n)
    else:
        oper_evo = False
        norm_dim_factor = 1.0

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    def get_curr_state_data():
        if oper_evo:
            return vec2mat(r.y)
        else:
            return r.y

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        # get the current state / oper data if needed
        cdata = None
        if opt.store_states or opt.normalize_output or n_expt_op > 0:
            cdata = get_curr_state_data()

        if opt.normalize_output:
            # cdata *= _get_norm_factor(cdata, oper_evo)
            cdata *= norm_dim_factor / la_norm(cdata)
            if oper_evo:
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                r.set_initial_value(cdata, r.t)

        if opt.store_states:
            output.states.append(Qobj(cdata, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(cdata, dims=dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    cdata, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        cdata = get_curr_state_data()
        if opt.normalize_output:
            cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output
コード例 #4
0
ファイル: sesolve.py プロジェクト: Marata459/qutip
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar,
                       state_norm_func=None, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    r.y, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y)

    return output
コード例 #5
0
ファイル: floquet.py プロジェクト: bcriger/qutip
def floquet_markov_mesolve(R,
                           ekets,
                           rho0,
                           tlist,
                           e_ops,
                           f_modes_table=None,
                           options=None,
                           floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho.data = vec2mat(r.y)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output
コード例 #6
0
def brmesolve(H,
              psi0,
              tlist,
              a_ops,
              e_ops=[],
              spectra_cb=[],
              c_ops=[],
              args={},
              options=Options(),
              _safe_mode=True):
    """
    Solve the dynamics for a system using the Bloch-Redfield master equation.

    .. note::

        This solver does not currently support time-dependent Hamiltonians.

    Parameters
    ----------

    H : :class:`qutip.Qobj`
        System Hamiltonian.

    rho0 / psi0: :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    tlist : *list* / *array*
        List of times for :math:`t`.

    a_ops : list of :class:`qutip.qobj`
        List of system operators that couple to bath degrees of freedom.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    c_ops : list of :class:`qutip.qobj`
        List of system collapse operators.

    args : *dictionary*
        Placeholder for future implementation, kept for API consistency.

    options : :class:`qutip.solver.Options`
        Options for the solver.

    Returns
    -------

    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """

    if _safe_mode:
        _solver_safety_check(H, psi0, a_ops, e_ops, args)

    if not spectra_cb:
        # default to infinite temperature white noise
        spectra_cb = [lambda w: 1.0 for _ in a_ops]

    R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)

    if e_ops:
        output.expect = results
    else:
        output.states = results

    return output
コード例 #7
0
ファイル: mcsolve_f90.py プロジェクト: Marata459/qutip
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None,
                options=Options(), sparse_dms=True, serial=False,
                ptrace_sel=[], calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Options
        Instance of solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    config.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full()
    else:
        config.psi0 = psi0.full()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        config.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        config.soft_reset()
        # no time dependence
        config.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                      "a list of components to keep when calculating average" +
                      " entropy of reduced density matrix in ptrace_sel. " +
                      "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Result object
    output = Result()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj

    return output
コード例 #8
0
ファイル: floquet.py プロジェクト: Marata459/qutip
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
    """
    Solve the Schrodinger equation using the Floquet formalism.

    Parameters
    ----------

    H : :class:`qutip.qobj.Qobj`
        System Hamiltonian, time-dependent with period `T`.

    psi0 : :class:`qutip.qobj`
        Initial state vector (ket).

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values. If this
        list is empty, the state vectors for each time in `tlist` will be
        returned instead of expectation values.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    Tsteps : integer
        The number of time steps in one driving period for which to
        precalculate the Floquet modes. `Tsteps` should be an even number.

    Returns
    -------

    output : :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """

    if not T:
        # assume that tlist span exactly one period of the driving
        T = tlist[-1]

    # find the floquet modes for the time-dependent hamiltonian
    f_modes_0, f_energies = floquet_modes(H, T, args)

    # calculate the wavefunctions using the from the floquet modes
    f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                          np.linspace(0, T, Tsteps + 1),
                                          H, T, args)

    # setup Result for storing the results
    output = Result()
    output.times = tlist
    output.solver = "fsesolve"

    if isinstance(e_ops, FunctionType):
        output.num_expect = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        output.num_expect = len(e_ops)
        expt_callback = False

        if output.num_expect == 0:
            output.states = []
        else:
            output.expect = []
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(len(tlist)))
                else:
                    output.expect.append(np.zeros(len(tlist), dtype=complex))

    else:
        raise TypeError("e_ops must be a list Qobj or a callback function")

    psi0_fb = psi0.transform(f_modes_0)
    for t_idx, t in enumerate(tlist):
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        f_states_t = floquet_states(f_modes_t, f_energies, t)
        psi_t = psi0_fb.transform(f_states_t, True)

        if expt_callback:
            # use callback method
            e_ops(t, psi_t)
        else:
            # calculate all the expectation values, or output psi if
            # no expectation value operators where defined
            if output.num_expect == 0:
                output.states.append(Qobj(psi_t))
            else:
                for e_idx, e in enumerate(e_ops):
                    output.expect[e_idx][t_idx] = expect(e, psi_t)

    return output
コード例 #9
0
ファイル: sesolve.py プロジェクト: thomascherickal/qutip
def _generic_ode_solve(func,
                       ode_args,
                       psi0,
                       tlist,
                       e_ops,
                       opt,
                       progress_bar,
                       dims=None):
    """
    Internal function for solving ODEs.
    """
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # This function is made similar to mesolve's one for futur merging in a
    # solver class
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    # prepare output array
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        initial_vector = psi0.full().ravel('F')
        oper_evo = True
        size = psi0.shape[0]
        # oper_n = dims[0][0]
        # norm_dim_factor = np.sqrt(oper_n)
    elif psi0.isket:
        initial_vector = psi0.full().ravel()
        oper_evo = False
        # norm_dim_factor = 1.0

    r = scipy.integrate.ode(func)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    if ode_args:
        r.set_f_params(*ode_args)
    r.set_initial_value(initial_vector, tlist[0])

    e_ops_data = []
    output.expect = []
    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True
        output.num_expect = 1
    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False
        output.num_expect = n_expt_op
        if n_expt_op == 0:
            # fallback on storing states
            opt.store_states = True
        else:
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
        if oper_evo:
            for e in e_ops:
                e_ops_data.append(e.dag().data)
        else:
            for e in e_ops:
                e_ops_data.append(e.data)
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    if opt.store_states:
        output.states = []

    if oper_evo:

        def get_curr_state_data(r):
            return vec2mat(r.y)
    else:

        def get_curr_state_data(r):
            return r.y

    #
    # start evolution
    #
    dt = np.diff(tlist)
    cdata = None
    progress_bar.start(n_tsteps)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)
        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")
        # get the current state / oper data if needed
        if opt.store_states or opt.normalize_output or n_expt_op > 0 or expt_callback:
            cdata = get_curr_state_data(r)

        if opt.normalize_output:
            # normalize per column
            if oper_evo:
                cdata /= la_norm(cdata, axis=0)
                #cdata *= norm_dim_factor / la_norm(cdata)
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                #cdata /= la_norm(cdata)
                norm = normalize_inplace(cdata)
                if norm > 1e-12:
                    # only reset the solver if state changed
                    r.set_initial_value(cdata, r.t)
                else:
                    r._y = cdata

        if opt.store_states:
            if oper_evo:
                fdata = dense2D_to_fastcsr_fmode(cdata, size, size)
                output.states.append(Qobj(fdata, dims=dims))
            else:
                fdata = dense1D_to_fastcsr_ket(cdata)
                output.states.append(Qobj(fdata, dims=dims, fast='mc'))

        if expt_callback:
            # use callback method
            output.expect.append(e_ops(t, Qobj(cdata, dims=dims)))

        if oper_evo:
            for m in range(n_expt_op):
                output.expect[m][t_idx] = (e_ops_data[m] * cdata).trace()
        else:
            for m in range(n_expt_op):
                output.expect[m][t_idx] = cy_expect_psi(
                    e_ops_data[m], cdata, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if opt.store_final_state:
        cdata = get_curr_state_data(r)
        if opt.normalize_output:
            cdata /= la_norm(cdata, axis=0)
            # cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output
コード例 #10
0
ファイル: mcsolve.py プロジェクト: paniash/qutip
    def get_result(self, ntraj=[]):
        # Store results in the Result object
        if not ntraj:
            ntraj = [self.num_traj]
        elif not isinstance(ntraj, list):
            ntraj = [ntraj]

        output = Result()
        output.solver = 'mcsolve'
        output.seeds = self.seeds

        options = self.options
        output.options = options

        if options.steady_state_average:
            output.states = self.steady_state
        elif options.average_states and options.store_states:
            output.states = self.states
        elif options.store_states:
            output.states = self.runs_states

        if options.store_final_state:
            if options.average_states:
                output.final_state = self.final_state
            else:
                output.final_state = self.runs_final_states

        if options.average_expect:
            output.expect = [self.expect_traj_avg(n) for n in ntraj]
            if len(output.expect) == 1:
                output.expect = output.expect[0]
        else:
            output.expect = self.runs_expect

        # simulation parameters
        output.times = self.tlist
        output.num_expect = self.e_ops.e_num
        output.num_collapse = len(self.ss.td_c_ops)
        output.ntraj = self.num_traj
        output.col_times = self.collapse_times
        output.col_which = self.collapse_which

        return output
コード例 #11
0
ファイル: objective.py プロジェクト: Basilewitsch/krotov
    def propagate(self, tlist, *, propagator, rho0=None, e_ops=None):
        """Propagates the system of the objective over the entire time grid

        Solve the dynamics for the `H` and `c_ops` of the objective. If `rho0`
        is not given, the `initial_state` will be propagated. This is similar
        to the :meth:`mesolve` method, but instead of using
        :func:`qutip.mesolve.mesolve`, the `propagate` function is used to go
        between points on the time grid. This function is the same as what is
        passed to :func:`.optimize_pulses`. The crucial difference between this
        and :meth:`mesolve` is in the time discretization convention. While
        :meth:`mesolve` uses piecewise-constant controls centered around the
        values in `tlist` (the control field switches in the middle between two
        points in `tlist`), :meth:`propagate` uses piecewise-constant controls
        on the intervals of `tlist` (the control field switches on the points
        in `tlist`)

        Comparing the result of :meth:`mesolve` and :meth:`propagate` allows to
        estimate the "time discretization error". If the error is significant,
        a shorter time step shoud be used.

        Returns:
            qutip.solver.Result: Result of the propagation, using the same
            structure as :meth:`mesolve`.
        """
        if e_ops is None:
            e_ops = []
        result = QutipSolverResult()
        result.solver = propagator.__name__
        result.times = copy.copy(tlist)
        result.states = []
        result.expect = []
        result.num_expect = len(e_ops)
        result.num_collapse = len(self.c_ops)
        for _ in e_ops:
            result.expect.append([])
        state = rho0
        if state is None:
            state = self.initial_state
        if len(e_ops) == 0:
            result.states.append(state)
        else:
            for (i, oper) in enumerate(e_ops):
                result.expect[i].append(qutip.expect(oper, state))
        controls = extract_controls([self])
        pulses_mapping = extract_controls_mapping([self], controls)
        mapping = pulses_mapping[0]  # "first objective" (dummy structure)
        tlist_midpoints = _tlist_midpoints(tlist)
        pulses = [  # defined on the tlist intervals
            control_onto_interval(control, tlist, tlist_midpoints)
            for control in controls
        ]
        for time_index in range(len(tlist) - 1):  # index over intervals
            H = plug_in_pulse_values(self.H, pulses, mapping[0], time_index)
            c_ops = [
                plug_in_pulse_values(c_op, pulses, mapping[ic + 1], time_index)
                for (ic, c_op) in enumerate(self.c_ops)
            ]
            dt = tlist[time_index + 1] - tlist[time_index]
            state = propagator(H, state, dt, c_ops)
            if len(e_ops) == 0:
                result.states.append(state)
            else:
                for (i, oper) in enumerate(e_ops):
                    result.expect[i].append(qutip.expect(oper, state))
        return result
コード例 #12
0
def essolve(H, rho0, tlist, c_op_list, e_ops):
    """
    Evolution of a state vector or density matrix (`rho0`) for a given
    Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by
    expressing the ODE as an exponential series. The output is either
    the state vector at arbitrary points in time (`tlist`), or the
    expectation values of the supplied operators (`e_ops`).

    .. deprecated:: 4.6.0
        :obj:`~essolve` will be removed in QuTiP 5.  Please use
        :obj:`~qutip.sesolve` or :obj:`~qutip.mesolve` for general-purpose
        integration of the Schroedinger/Lindblad master equation.
        This will likely be faster than :obj:`~essolve` for you.

    Parameters
    ----------
    H : qobj/function_type
        System Hamiltonian.

    rho0 : :class:`qutip.qobj`
        Initial state density matrix.

    tlist : list/array
        ``list`` of times for :math:`t`.

    c_op_list : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` collapse operators.

    e_ops : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` operators for which to evaluate
        expectation values.


    Returns
    -------
     expt_array : array
        Expectation values of wavefunctions/density matrices for the
        times specified in ``tlist``.


    .. note:: This solver does not support time-dependent Hamiltonians.

    """
    n_expt_op = len(e_ops)
    n_tsteps = len(tlist)

    # Calculate the Liouvillian
    if (c_op_list is None or len(c_op_list) == 0) and isket(rho0):
        L = H
    else:
        L = liouvillian(H, c_op_list)

    es = ode2es(L, rho0)

    # evaluate the expectation values
    if n_expt_op == 0:
        results = [Qobj()] * n_tsteps
    else:
        results = np.zeros([n_expt_op, n_tsteps], dtype=complex)

    for n, e in enumerate(e_ops):
        results[n, :] = expect(e, esval(es, tlist))

    data = Result()
    data.solver = "essolve"
    data.times = tlist
    data.expect = [np.real(results[n, :]) if e.isherm else results[n, :]
                   for n, e in enumerate(e_ops)]

    return data
コード例 #13
0
ファイル: krylovsolve.py プロジェクト: christian512/qutip
def krylovsolve(
    H: Qobj,
    psi0: Qobj,
    tlist: np.array,
    krylov_dim: int,
    e_ops=None,
    options=None,
    progress_bar: bool = None,
    sparse: bool = False,
):
    """
    Time evolution of state vectors for time independent Hamiltonians.
    Evolve the state vector ("psi0") finding an approximation for the time
    evolution operator of Hamiltonian ("H") by obtaining the projection of
    the time evolution operator on a set of small dimensional Krylov
    subspaces (m << dim(H)).

    The output is either the state vector or the expectation values of
    supplied operators ("e_ops") at arbitrary points at ("tlist").

    **Additional options**

    Additional options to krylovsolve can be set with the following:

    * "store_states": stores states even though expectation values are
      requested via the "e_ops" argument.

    * "store_final_state": store final state even though expectation values are
      requested via the "e_ops" argument.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.
    psi0 : :class: `qutip.Qobj`
        Initial state vector (ket).
    tlist : None / *list* / *array*
        List of times on which to evolve the initial state. If None, nothing
        happens but the code won't break.
    krylov_dim: int
        Dimension of Krylov approximation subspaces used for the time
        evolution approximation.
    e_ops : None / list of :class:`qutip.Qobj`
        Single operator or list of operators for which to evaluate
        expectation values.
    options : Options
        Instance of ODE solver options, as well as krylov parameters.
            atol: controls (approximately) the error desired for the final
                  solution. (Defaults to 1e-8)
            nsteps: maximum number of krylov's internal number of Lanczos
                    iterations. (Defaults to 10000)
    progress_bar : None / BaseProgressBar
         Optional instance of BaseProgressBar, or a subclass thereof, for
         showing the progress of the simulation.
    sparse : bool (default False)
         Use np.array to represent system Hamiltonians. If True, scipy sparse
         arrays are used instead.

    Returns
    -------
    result: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`, which contains
        either an *array* `result.expect` of expectation values for the times
        `tlist`, or an *array* `result.states` of state vectors corresponding
        to the times `tlist` [if `e_ops` is an empty list].
    """
    # check the physics
    _check_inputs(H, psi0, krylov_dim)

    # check extra inputs
    e_ops, e_ops_dict = _check_e_ops(e_ops)
    pbar = _check_progress_bar(progress_bar)

    # transform inputs type from Qobj to np.ndarray/csr_matrix
    if sparse:
        _H = H.get_data()  # (fast_) csr_matrix
    else:
        _H = H.full().copy()  # np.ndarray
    _psi = psi0.full().copy()
    _psi = _psi / np.linalg.norm(_psi)

    # create internal variable and output containers
    if options is None:
        options = Options(nsteps=10000)
    krylov_results = Result()
    krylov_results.solver = "krylovsolve"

    # handle particular cases of an empty tlist or single element
    n_tlist_steps = len(tlist)
    if n_tlist_steps < 1:
        return krylov_results

    if n_tlist_steps == 1:  # if tlist has only one element, return it
        krylov_results = particular_tlist_or_happy_breakdown(
            tlist, n_tlist_steps, options, psi0, e_ops, krylov_results,
            pbar)  # this will also raise a warning
        return krylov_results

    tf = tlist[-1]
    t0 = tlist[0]

    # optimization step using Lanczos, then reuse it for the first partition
    dim_m = krylov_dim
    krylov_basis, T_m = lanczos_algorithm(_H,
                                          _psi,
                                          krylov_dim=dim_m,
                                          sparse=sparse)

    # check if a happy breakdown occurred
    if T_m.shape[0] < krylov_dim + 1:
        if T_m.shape[0] == 1:
            # this means that the state does not evolve in time, it lies in a
            # symmetry of H subspace. Thus, theres no work to be done.
            krylov_results = particular_tlist_or_happy_breakdown(
                tlist,
                n_tlist_steps,
                options,
                psi0,
                e_ops,
                krylov_results,
                pbar,
                happy_breakdown=True,
            )
            return krylov_results
        else:
            # no optimization is required, convergence is guaranteed.
            delta_t = tf - t0
            n_timesteps = 1
    else:

        # calculate optimal number of internal timesteps.
        delta_t = _optimize_lanczos_timestep_size(T_m,
                                                  krylov_basis=krylov_basis,
                                                  tlist=tlist,
                                                  options=options)
        n_timesteps = int(ceil((tf - t0) / delta_t))

        if n_timesteps >= options.nsteps:
            raise Exception(
                f"Optimization requires a number {n_timesteps} of lanczos iterations, "
                f"which exceeds the defined allowed number {options.nsteps}. This can "
                "be increased via the 'Options.nsteps' property.")

    partitions = _make_partitions(tlist=tlist, n_timesteps=n_timesteps)

    if progress_bar:
        pbar.start(len(partitions))

    # update parameters regarding e_ops
    krylov_results, expt_callback, options, n_expt_op = _e_ops_outputs(
        krylov_results, e_ops, n_tlist_steps, options)

    # parameters for the lazy iteration evolve tlist
    psi_norm = np.linalg.norm(_psi)
    last_t = t0

    for idx, partition in enumerate(partitions):

        evolved_states = _evolve_krylov_tlist(
            H=_H,
            psi0=_psi,
            krylov_dim=dim_m,
            tlist=partition,
            t0=last_t,
            psi_norm=psi_norm,
            krylov_basis=krylov_basis,
            T_m=T_m,
            sparse=sparse,
        )

        if idx == 0:
            krylov_basis = None
            T_m = None
            t_idx = 0

        _psi = evolved_states[-1]
        psi_norm = np.linalg.norm(_psi)
        last_t = partition[-1]

        # apply qobj to each evolved state, remove repeated tail elements
        qobj_evolved_states = [
            Qobj(state, dims=psi0.dims) for state in evolved_states[1:-1]
        ]

        krylov_results = _expectation_values(
            e_ops,
            n_expt_op,
            expt_callback,
            krylov_results,
            qobj_evolved_states,
            partitions,
            idx,
            t_idx,
            options,
        )

        t_idx += len(partition[1:-1])

        pbar.update(idx)

    pbar.finished()

    if e_ops_dict:
        krylov_results.expect = {
            e: krylov_results.expect[n]
            for n, e in enumerate(e_ops_dict.keys())
        }

    return krylov_results
コード例 #14
0
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #15
0
ファイル: mesolve.py プロジェクト: anubhavvardhan/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #16
0
ファイル: bloch_redfield.py プロジェクト: JonathanUlm/qutip
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[],
              args={}, options=Options()):
    """
    Solve the dynamics for a system using the Bloch-Redfield master equation.

    .. note::

        This solver does not currently support time-dependent Hamiltonians.

    Parameters
    ----------

    H : :class:`qutip.Qobj`
        System Hamiltonian.

    rho0 / psi0: :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    tlist : *list* / *array*
        List of times for :math:`t`.

    a_ops : list of :class:`qutip.qobj`
        List of system operators that couple to bath degrees of freedom.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    c_ops : list of :class:`qutip.qobj`
        List of system collapse operators.

    args : *dictionary*
        Placeholder for future implementation, kept for API consistency.

    options : :class:`qutip.solver.Options`
        Options for the solver.

    Returns
    -------

    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """

    if not spectra_cb:
        # default to infinite temperature white noise
        spectra_cb = [lambda w: 1.0 for _ in a_ops]

    R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)

    if e_ops:
        output.expect = results
    else:
        output.states = results

    return output
コード例 #17
0
def generic_ode_solve_checkpoint(r, rho0, tlist, e_ops, opt, progress_bar,
                                 save, subdir):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    e_ops_dict = e_ops
    e_ops = [e for e in e_ops_dict.values()]
    headings = [key for key in e_ops_dict.keys()]

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    results_row = np.zeros(n_expt_op)

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)
    dims = rho.dims

    dt = np.diff(tlist)

    end_time = tlist[-1]

    for t_idx, t in tqdm(enumerate(tlist)):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
                results_row[m] = output.expect[m][t_idx]
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)
                results_row[m] = output.expect[m][t_idx]

        results = pd.DataFrame(results_row).T
        results.columns = headings
        results.index = [t]
        results.index.name = 'times'
        if t == 0:
            first_row = True
        else:
            first_row = False
        if save:

            rho_checkpoint = Qobj(vec2mat(r.y))
            rho_checkpoint.dims = dims

            if t_idx % 200 == 0:
                rho_c = rho_checkpoint.ptrace(0)
                with open('./cavity_states.pkl', 'ab') as f:
                    pickle.dump(rho_c, f)

            with open('./results.csv', 'a') as file:
                results.to_csv(file, header=first_row, float_format='%.15f')

            qsave(rho_checkpoint, './state_checkpoint')

        save = True

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        _cython_build_cleanup(config.tdname)

    return output
コード例 #18
0
ファイル: mcsolve_f90.py プロジェクト: Marata459/qutip
    def evolve_serial(self, args):

        if debug:
            print(inspect.stack()[0][3] + ":" + str(os.getpid()))

        # run ntraj trajectories for one process via fortran
        # get args
        queue, ntraj, instanceno, rngseed = args
        # initialize the problem in fortran
        _init_tlist()
        _init_psi0()
        if (self.ptrace_sel != []):
            _init_ptrace_stuff(self.ptrace_sel)
        _init_hamilt()
        if (config.c_num != 0):
            _init_c_ops()
        if (config.e_num != 0):
            _init_e_ops()
        # set options
        qtf90.qutraj_run.n_c_ops = config.c_num
        qtf90.qutraj_run.n_e_ops = config.e_num
        qtf90.qutraj_run.ntraj = ntraj
        qtf90.qutraj_run.unravel_type = self.unravel_type
        qtf90.qutraj_run.average_states = config.options.average_states
        qtf90.qutraj_run.average_expect = config.options.average_expect
        qtf90.qutraj_run.init_result(config.psi0_shape[0],
                                     config.options.atol,
                                     config.options.rtol, mf=self.mf,
                                     norm_steps=config.norm_steps,
                                     norm_tol=config.norm_tol)
        # set optional arguments
        qtf90.qutraj_run.order = config.options.order
        qtf90.qutraj_run.nsteps = config.options.nsteps
        qtf90.qutraj_run.first_step = config.options.first_step
        qtf90.qutraj_run.min_step = config.options.min_step
        qtf90.qutraj_run.max_step = config.options.max_step
        qtf90.qutraj_run.norm_steps = config.options.norm_steps
        qtf90.qutraj_run.norm_tol = config.options.norm_tol
        # use sparse density matrices during computation?
        qtf90.qutraj_run.rho_return_sparse = self.sparse_dms
        # calculate entropy of reduced density matrice?
        qtf90.qutraj_run.calc_entropy = self.calc_entropy
        # run
        show_progress = 1 if debug else 0
        qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress)

        # construct Result instance
        sol = Result()
        sol.ntraj = ntraj
        # sol.col_times = qtf90.qutraj_run.col_times
        # sol.col_which = qtf90.qutraj_run.col_which-1
        sol.col_times, sol.col_which = self.get_collapses(ntraj)
        if (config.e_num == 0):
            sol.states = self.get_states(len(config.tlist), ntraj)
        else:
            sol.expect = self.get_expect(len(config.tlist), ntraj)
        if (self.calc_entropy):
            sol.entropy = self.get_entropy(len(config.tlist))

        if (not self.serial_run):
            # put to queue
            queue.put(sol)
            queue.join()

        # deallocate stuff
        # finalize()
        return sol
コード例 #19
0
ファイル: heom.py プロジェクト: marekyggdrasil/qutip
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        start_run = timeit.default_timer()

        sup_dim = self._sup_dim
        stats = self.stats
        r = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")
        if stats:
            ss_conf = stats.sections.get('config')
            if ss_conf is None:
                raise RuntimeError("No config section for solver stats")
            ss_run = stats.sections.get('run')
            if ss_run is None:
                ss_run = stats.add_section('run')

        # Set up terms of the matsubara and tanimura boundaries
        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        if stats: start_init = timeit.default_timer()
        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F')  # Using 'F' effectively transposes
        rho0_he = np.zeros([sup_dim * self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        r.set_initial_value(rho0_he, tlist[0])

        if stats:
            stats.add_timing('initialize',
                             timeit.default_timer() - start_init, ss_run)
            start_integ = timeit.default_timer()

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
                output.states.append(rho)

        if stats:
            time_now = timeit.default_timer()
            stats.add_timing('integrate', time_now - start_integ, ss_run)
            if ss_run.total_time is None:
                ss_run.total_time = time_now - start_run
            else:
                ss_run.total_time += time_now - start_run
            stats.total_time = ss_conf.total_time + ss_run.total_time

        return output
コード例 #20
0
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
コード例 #21
0
def _generic_ode_solve(func,
                       ode_args,
                       rho0,
                       tlist,
                       e_ops,
                       opt,
                       progress_bar,
                       dims=None):
    """
    Internal function for solving ME.
    Calculate the required expectation values or invoke
    callback function at each time step.
    """
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # This function is made similar to sesolve's one for futur merging in a
    # solver class
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    # prepare output array
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "mesolve"
    output.times = tlist
    size = rho0.shape[0]

    initial_vector = rho0.full().ravel('F')

    r = scipy.integrate.ode(func)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    if ode_args:
        r.set_f_params(*ode_args)
    r.set_initial_value(initial_vector, tlist[0])

    e_ops_data = []
    output.expect = []
    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True
        output.num_expect = 1
    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False
        output.num_expect = n_expt_op
        if n_expt_op == 0:
            # fall back on storing states
            opt.store_states = True
        else:
            for op in e_ops:
                e_ops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    if opt.store_states:
        output.states = []

    def get_curr_state_data(r):
        return vec2mat(r.y)

    #
    # start evolution
    #
    dt = np.diff(tlist)
    cdata = None
    progress_bar.start(n_tsteps)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            cdata = get_curr_state_data(r)

        if opt.store_states:
            if issuper(rho0):
                fdata = dense2D_to_fastcsr_fmode(cdata, size, size)
                output.states.append(Qobj(fdata, dims=dims))
            else:
                fdata = dense2D_to_fastcsr_fmode(cdata, size, size)
                output.states.append(Qobj(fdata, dims=dims, fast="mc-dm"))

        if expt_callback:
            # use callback method
            output.expect.append(e_ops(t, Qobj(cdata, dims=dims)))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = expect_rho_vec(e_ops_data[m], r.y,
                                                     e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if opt.store_final_state:
        cdata = get_curr_state_data(r)
        output.final_state = Qobj(cdata, dims=dims, isherm=True)

    return output
コード例 #22
0
ファイル: floquet.py プロジェクト: bcriger/qutip
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
    """
    Solve the Schrodinger equation using the Floquet formalism.

    Parameters
    ----------

    H : :class:`qutip.qobj.Qobj`
        System Hamiltonian, time-dependent with period `T`.

    psi0 : :class:`qutip.qobj`
        Initial state vector (ket).

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values. If this
        list is empty, the state vectors for each time in `tlist` will be
        returned instead of expectation values.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    Tsteps : integer
        The number of time steps in one driving period for which to
        precalculate the Floquet modes. `Tsteps` should be an even number.

    Returns
    -------

    output : :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """

    if not T:
        # assume that tlist span exactly one period of the driving
        T = tlist[-1]

    # find the floquet modes for the time-dependent hamiltonian
    f_modes_0, f_energies = floquet_modes(H, T, args)

    # calculate the wavefunctions using the from the floquet modes
    f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                          np.linspace(0, T, Tsteps + 1), H, T,
                                          args)

    # setup Result for storing the results
    output = Result()
    output.times = tlist
    output.solver = "fsesolve"

    if isinstance(e_ops, FunctionType):
        output.num_expect = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        output.num_expect = len(e_ops)
        expt_callback = False

        if output.num_expect == 0:
            output.states = []
        else:
            output.expect = []
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(len(tlist)))
                else:
                    output.expect.append(np.zeros(len(tlist), dtype=complex))

    else:
        raise TypeError("e_ops must be a list Qobj or a callback function")

    psi0_fb = psi0.transform(f_modes_0)
    for t_idx, t in enumerate(tlist):
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        f_states_t = floquet_states(f_modes_t, f_energies, t)
        psi_t = psi0_fb.transform(f_states_t, True)

        if expt_callback:
            # use callback method
            e_ops(t, psi_t)
        else:
            # calculate all the expectation values, or output psi if
            # no expectation value operators where defined
            if output.num_expect == 0:
                output.states.append(Qobj(psi_t))
            else:
                for e_idx, e in enumerate(e_ops):
                    output.expect[e_idx][t_idx] = expect(e, psi_t)

    return output
コード例 #23
0
    def evolve_serial(self, args):

        if debug:
            print(inspect.stack()[0][3] + ":" + str(os.getpid()))

        # run ntraj trajectories for one process via fortran
        # get args
        queue, ntraj, instanceno, rngseed = args
        # initialize the problem in fortran
        _init_tlist()
        _init_psi0()
        if (self.ptrace_sel != []):
            _init_ptrace_stuff(self.ptrace_sel)
        _init_hamilt()
        if (config.c_num != 0):
            _init_c_ops()
        if (config.e_num != 0):
            _init_e_ops()
        # set options
        qtf90.qutraj_run.n_c_ops = config.c_num
        qtf90.qutraj_run.n_e_ops = config.e_num
        qtf90.qutraj_run.ntraj = ntraj
        qtf90.qutraj_run.unravel_type = self.unravel_type
        qtf90.qutraj_run.average_states = config.options.average_states
        qtf90.qutraj_run.average_expect = config.options.average_expect
        qtf90.qutraj_run.init_result(config.psi0_shape[0],
                                     config.options.atol,
                                     config.options.rtol,
                                     mf=self.mf,
                                     norm_steps=config.norm_steps,
                                     norm_tol=config.norm_tol)
        # set optional arguments
        qtf90.qutraj_run.order = config.options.order
        qtf90.qutraj_run.nsteps = config.options.nsteps
        qtf90.qutraj_run.first_step = config.options.first_step
        qtf90.qutraj_run.min_step = config.options.min_step
        qtf90.qutraj_run.max_step = config.options.max_step
        qtf90.qutraj_run.norm_steps = config.options.norm_steps
        qtf90.qutraj_run.norm_tol = config.options.norm_tol
        # use sparse density matrices during computation?
        qtf90.qutraj_run.rho_return_sparse = self.sparse_dms
        # calculate entropy of reduced density matrice?
        qtf90.qutraj_run.calc_entropy = self.calc_entropy
        # run
        show_progress = 1 if debug else 0
        qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress)

        # construct Result instance
        sol = Result()
        sol.ntraj = ntraj
        # sol.col_times = qtf90.qutraj_run.col_times
        # sol.col_which = qtf90.qutraj_run.col_which-1
        sol.col_times, sol.col_which = self.get_collapses(ntraj)
        if (config.e_num == 0):
            sol.states = self.get_states(len(config.tlist), ntraj)
        else:
            sol.expect = self.get_expect(len(config.tlist), ntraj)
        if (self.calc_entropy):
            sol.entropy = self.get_entropy(len(config.tlist))

        if (not self.serial_run):
            # put to queue
            queue.put(sol)
            queue.join()

        # deallocate stuff
        # finalize()
        return sol
コード例 #24
0
ファイル: mcsolve.py プロジェクト: ntezak/qutip
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=Options()):
    """Monte-Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H=[H0,[H1,H1_coeff]]

        c_op_list=[C0,[C1,C1_coeff]]

        args={'a':A,'w':W}

    or in String (Cython) format we could write::

        H=[H0,[H1,'sin(w*t)']]

        c_op_list=[C0,[C1,'exp(-a*t)']]

        args={'a':A,'w':W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.
    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Options
        Instance of ODE solver options.

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """

    if debug:
        print(inspect.stack()[0][3])

    if ntraj is None:
        ntraj = options.ntraj

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options
    if isinstance(ntraj, list):
        config.progress_bar = TextProgressBar(max(ntraj))
    else:
        config.progress_bar = TextProgressBar(ntraj)

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, ndarray)):
        config.ntraj = sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # ----------------------------------------------
    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # ----------------------------------------------
    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc")
        h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in array([1, 10, 11]):
            if any(args):
                config.c_args = []
                arg_items = args.items()
                for k in range(len(args)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in array([2, 3, 20, 22]):
            config.h_func_args = args

    # load monte-carlo class
    mc = _MC_class(config)

    # RUN THE SIMULATION
    mc.run()

    # remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    # AFTER MCSOLVER IS DONE --------------------------------------
    # ------- COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT --------------
    output = Result()
    output.solver = "mcsolve"
    # state vectors
    if mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1:
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out
    # expectation values
    elif mc.expect_out is not None and config.cflag and config.options.average_expect:
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [mean([mc.expect_out[nt][op] for nt in range(ntraj)], axis=0) for op in range(config.e_num)]
        elif isinstance(ntraj, (list, ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_states flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #25
0
def _gather(sols):
    # gather list of Result objects, sols, into one.
    sol = Result()
    # sol = sols[0]
    ntraj = sum([a.ntraj for a in sols])
    sol.col_times = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_which = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_times[0:sols[0].ntraj] = sols[0].col_times
    sol.col_which[0:sols[0].ntraj] = sols[0].col_which
    sol.states = np.array(sols[0].states, dtype=object)
    sol.expect = np.array(sols[0].expect)
    if (hasattr(sols[0], 'entropy')):
        sol.entropy = np.array(sols[0].entropy)
    sofar = 0
    for j in range(1, len(sols)):
        sofar = sofar + sols[j - 1].ntraj
        sol.col_times[sofar:sofar + sols[j].ntraj] = (sols[j].col_times)
        sol.col_which[sofar:sofar + sols[j].ntraj] = (sols[j].col_which)
        if (config.e_num == 0):
            if (config.options.average_states):
                # collect states, averaged over trajectories
                sol.states += np.array(sols[j].states)
            else:
                # collect states, all trajectories
                sol.states = np.vstack((sol.states, np.array(sols[j].states)))
        else:
            if (config.options.average_expect):
                # collect expectation values, averaged
                for i in range(config.e_num):
                    sol.expect[i] += np.array(sols[j].expect[i])
            else:
                # collect expectation values, all trajectories
                sol.expect = np.vstack((sol.expect, np.array(sols[j].expect)))
        if (hasattr(sols[j], 'entropy')):
            if (config.options.average_states
                    or config.options.average_expect):
                # collect entropy values, averaged
                sol.entropy += np.array(sols[j].entropy)
            else:
                # collect entropy values, all trajectories
                sol.entropy = np.vstack(
                    (sol.entropy, np.array(sols[j].entropy)))
    if (config.options.average_states or config.options.average_expect):
        if (config.e_num == 0):
            sol.states = sol.states / len(sols)
        else:
            sol.expect = list(sol.expect / len(sols))
            inds = np.where(config.e_ops_isherm)[0]
            for jj in inds:
                sol.expect[jj] = np.real(sol.expect[jj])
        if (hasattr(sols[0], 'entropy')):
            sol.entropy = sol.entropy / len(sols)

    # convert sol.expect array to list and fix dtypes of arrays
    if (not config.options.average_expect) and config.e_num != 0:
        temp = [list(sol.expect[ii]) for ii in range(ntraj)]
        for ii in range(ntraj):
            for jj in np.where(config.e_ops_isherm)[0]:
                temp[ii][jj] = np.real(temp[ii][jj])
        sol.expect = temp
    # convert to list/array to be consistent with qutip mcsolve
    sol.states = list(sol.states)
    return sol
コード例 #26
0
def mcsolve_f90(H,
                psi0,
                tlist,
                c_ops,
                e_ops,
                ntraj=None,
                options=Options(),
                sparse_dms=True,
                serial=False,
                ptrace_sel=[],
                calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Options
        Instance of solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    config.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full()
    else:
        config.psi0 = psi0.full()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        config.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        config.soft_reset()
        # no time dependence
        config.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                      "a list of components to keep when calculating average" +
                      " entropy of reduced density matrix in ptrace_sel. " +
                      "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Result object
    output = Result()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj

    return output
コード例 #27
0
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    rho0vec = operator_to_vector(rho0)

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
コード例 #28
0
ファイル: heom.py プロジェクト: MichalKononenko/qutip
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        start_run = timeit.default_timer()

        sup_dim = self._sup_dim
        stats = self.stats
        r = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")
        if stats:
            ss_conf = stats.sections.get('config')
            if ss_conf is None:
                raise RuntimeError("No config section for solver stats")
            ss_run = stats.sections.get('run')
            if ss_run is None:
                ss_run = stats.add_section('run')

        # Set up terms of the matsubara and tanimura boundaries
        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        if stats: start_init = timeit.default_timer()
        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes
        rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        r.set_initial_value(rho0_he, tlist[0])

        if stats:
            stats.add_timing('initialize',
                             timeit.default_timer() - start_init, ss_run)
            start_integ = timeit.default_timer()

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
                output.states.append(rho)

        if stats:
            time_now = timeit.default_timer()
            stats.add_timing('integrate',
                             time_now - start_integ, ss_run)
            if ss_run.total_time is None:
                ss_run.total_time = time_now - start_run
            else:
                ss_run.total_time += time_now - start_run
            stats.total_time = ss_conf.total_time + ss_run.total_time

        return output
コード例 #29
0
def _ssepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See ssepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "sepdpsolve"
    data.times = sso.tlist
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = sso.H
    for c in sso.c_ops:
        Heff += -0.5j * c.dag() * c

    progress_bar.start(sso.ntraj)
    for n in range(sso.ntraj):
        progress_bar.update(n)
        psi_t = sso.state0.full().ravel()

        states_list, jump_times, jump_op_idx = \
            _ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
                                           N_store, N_substeps,
                                           psi_t, sso.state0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / nt

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n, :])
                   if e.isherm else data.expect[n, :]
                   for n, e in enumerate(sso.e_ops)]

    return data
コード例 #30
0
ファイル: bloch_redfield.py プロジェクト: ajgpitch/qutip
def brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[],
              args={}, use_secular=True, sec_cutoff = 0.1,
              tol=qset.atol,
              spectra_cb=None, options=None,
              progress_bar=None, _safe_mode=True, verbose=False):
    """
    Solves for the dynamics of a system using the Bloch-Redfield master equation,
    given an input Hamiltonian, Hermitian bath-coupling terms and their associated 
    spectrum functions, as well as possible Lindblad collapse operators.
              
    For time-independent systems, the Hamiltonian must be given as a Qobj,
    whereas the bath-coupling terms (a_ops), must be written as a nested list
    of operator - spectrum function pairs, where the frequency is specified by
    the `w` variable.
              
    *Example*

        a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] 
              
    For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse
    operators (c_ops), can be specified in the QuTiP string-based time-dependent
    format.  For the a_op spectra, the frequency variable must be `w`, and the 
    string cannot contain any other variables other than the possibility of having
    a time-dependence through the time variable `t`:
                            
    *Example*

        a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']]
              
    It is also possible to use Cubic_Spline objects for time-dependence.  In
    the case of a_ops, Cubic_Splines must be passed as a tuple:
              
    *Example*
              
        a_ops = [ [a+a.dag(), ( f(w), g(t)] ]
              
    where f(w) and g(t) are strings or Cubic_spline objects for the bath
    spectrum and time-dependence, respectively.
              
    Finally, if one has bath-couplimg terms of the form
    H = f(t)*a + conj[f(t)]*a.dag(), then the correct input format is
              
    *Example*
    
              a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],... ]

    where f(w) is the spectrum of the operators while g1(t) and g2(t)
    are the time-dependence of the operators `a` and `a.dag()`, respectively 
    
    Parameters
    ----------
    H : Qobj / list
        System Hamiltonian given as a Qobj or
        nested list in string-based format.

    psi0: Qobj
        Initial density matrix or state vector (ket).

    tlist : array_like
        List of times for evaluating evolution

    a_ops : list
        Nested list of Hermitian system operators that couple to 
        the bath degrees of freedom, along with their associated
        spectra.

    e_ops : list
        List of operators for which to evaluate expectation values.

    c_ops : list
        List of system collapse operators, or nested list in
        string-based format.

    args : dict 
        Placeholder for future implementation, kept for API consistency.

    use_secular : bool {True}
        Use secular approximation when evaluating bath-coupling terms.
    
    sec_cutoff : float {0.1}
        Cutoff for secular approximation.
    
    tol : float {qutip.setttings.atol}
        Tolerance used for removing small values after 
        basis transformation.
              
    spectra_cb : list
        DEPRECIATED. Do not use.
    
    options : :class:`qutip.solver.Options`
        Options for the solver.
              
    progress_bar : BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation.

    Returns
    -------
    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """
    _prep_time = time.time()
    #This allows for passing a list of time-independent Qobj
    #as allowed by mesolve
    if isinstance(H, list):
        if np.all([isinstance(h,Qobj) for h in H]):
            H = sum(H)
    
    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None
    
    if not (spectra_cb is None):
        warnings.warn("The use of spectra_cb is depreciated.", DeprecationWarning)
        _a_ops = []
        for kk, a in enumerate(a_ops):
            _a_ops.append([a,spectra_cb[kk]])
        a_ops = _a_ops

    if _safe_mode:
        _solver_safety_check(H, psi0, a_ops+c_ops, e_ops, args)
    
    # check for type (if any) of time-dependent inputs
    _, n_func, n_str = _td_format_check(H, a_ops+c_ops)
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()
        
    if options is None:
        options = Options()

    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.reset()
    
    #check if should use OPENMP
    check_use_openmp(options)
    
    if n_str == 0:
    
        R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb=None, c_ops=c_ops,
                    use_secular=use_secular, sec_cutoff=sec_cutoff)

        output = Result()
        output.solver = "brmesolve"
        output.times = tlist

        results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options,
                    progress_bar=progress_bar)

        if e_ops:
            output.expect = results
        else:
            output.states = results

        return output
        
    elif n_str != 0 and n_func == 0:
        output = _td_brmesolve(H, psi0, tlist, a_ops=a_ops, e_ops=e_ops, 
                        c_ops=c_ops, args=args, use_secular=use_secular, 
                        sec_cutoff=sec_cutoff,
                        tol=tol, options=options, 
                         progress_bar=progress_bar,
                         _safe_mode=_safe_mode, verbose=verbose, 
                         _prep_time=_prep_time)
                         
        return output
        
    else:
        raise Exception('Cannot mix func and str formats.')
コード例 #31
0
def _smepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See smepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "smepdpsolve"
    data.times = sso.times
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian(sso.H, sso.c_ops)

    progress_bar.start(sso.ntraj)

    for n in range(sso.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(sso.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, sso.times,
                                           N_store, N_substeps,
                                           rho_t, sso.rho0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / sso.ntraj

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    return data
コード例 #32
0
ファイル: mcsolve.py プロジェクト: mil52603/qutip
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #33
0
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """
    if opt.normalize_output:
        state_norm_func = norm
    else:
        state_norm_func = None

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, r.y,
                                                    e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y, dims=dims)

    return output
コード例 #34
0
ファイル: mesolve.py プロジェクト: wa4557/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
コード例 #35
0
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0],
                                                rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0],
                                            rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #36
0
ファイル: floquet.py プロジェクト: Marata459/qutip
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None,
                           options=None, floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho.data = vec2mat(r.y)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output
コード例 #37
0
ファイル: bloch_redfield.py プロジェクト: rfajri27/qutip-1
def _td_brmesolve(H,
                  psi0,
                  tlist,
                  a_ops=[],
                  e_ops=[],
                  c_ops=[],
                  args={},
                  use_secular=True,
                  sec_cutoff=0.1,
                  tol=qset.atol,
                  options=None,
                  progress_bar=None,
                  _safe_mode=True,
                  verbose=False,
                  _prep_time=0):

    if isket(psi0):
        rho0 = ket2dm(psi0)
    else:
        rho0 = psi0
    nrows = rho0.shape[0]

    H_terms = []
    H_td_terms = []
    H_obj = []
    A_terms = []
    A_td_terms = []
    C_terms = []
    C_td_terms = []
    CA_obj = []
    spline_count = [0, 0]
    coupled_ops = []
    coupled_lengths = []
    coupled_spectra = []

    if isinstance(H, Qobj):
        H_terms.append(H.full('f'))
        H_td_terms.append('1')
    else:
        for kk, h in enumerate(H):
            if isinstance(h, Qobj):
                H_terms.append(h.full('f'))
                H_td_terms.append('1')
            elif isinstance(h, list):
                H_terms.append(h[0].full('f'))
                if isinstance(h[1], Cubic_Spline):
                    H_obj.append(h[1].coeffs)
                    spline_count[0] += 1
                H_td_terms.append(h[1])
            else:
                raise Exception('Invalid Hamiltonian specification.')

    for kk, c in enumerate(c_ops):
        if isinstance(c, Qobj):
            C_terms.append(c.full('f'))
            C_td_terms.append('1')
        elif isinstance(c, list):
            C_terms.append(c[0].full('f'))
            if isinstance(c[1], Cubic_Spline):
                CA_obj.append(c[1].coeffs)
                spline_count[0] += 1
            C_td_terms.append(c[1])
        else:
            raise Exception('Invalid collapse operator specification.')

    coupled_offset = 0
    for kk, a in enumerate(a_ops):
        if isinstance(a, list):
            if isinstance(a[0], Qobj):
                A_terms.append(a[0].full('f'))
                A_td_terms.append(a[1])
                if isinstance(a[1], tuple):
                    if not len(a[1]) == 2:
                        raise Exception('Tuple must be len=2.')
                    if isinstance(a[1][0], Cubic_Spline):
                        spline_count[1] += 1
                    if isinstance(a[1][1], Cubic_Spline):
                        spline_count[1] += 1
            elif isinstance(a[0], tuple):
                if not isinstance(a[1], tuple):
                    raise Exception('Invalid bath-coupling specification.')
                if (len(a[0]) + 1) != len(a[1]):
                    raise Exception('BR a_ops tuple lengths not compatible.')

                coupled_ops.append(kk + coupled_offset)
                coupled_lengths.append(len(a[0]))
                coupled_spectra.append(a[1][0])
                coupled_offset += len(a[0]) - 1
                if isinstance(a[1][0], Cubic_Spline):
                    spline_count[1] += 1

                for nn, _a in enumerate(a[0]):
                    A_terms.append(_a.full('f'))
                    A_td_terms.append(a[1][nn + 1])
                    if isinstance(a[1][nn + 1], Cubic_Spline):
                        CA_obj.append(a[1][nn + 1].coeffs)
                        spline_count[1] += 1

        else:
            raise Exception('Invalid bath-coupling specification.')

    string_list = []
    for kk, _ in enumerate(H_td_terms):
        string_list.append("H_terms[{0}]".format(kk))
    for kk, _ in enumerate(H_obj):
        string_list.append("H_obj[{0}]".format(kk))
    for kk, _ in enumerate(C_td_terms):
        string_list.append("C_terms[{0}]".format(kk))
    for kk, _ in enumerate(CA_obj):
        string_list.append("CA_obj[{0}]".format(kk))
    for kk, _ in enumerate(A_td_terms):
        string_list.append("A_terms[{0}]".format(kk))
    #Add nrows to parameters
    string_list.append('nrows')
    for name, value in args.items():
        if isinstance(value, np.ndarray):
            raise TypeError('NumPy arrays not valid args for BR solver.')
        else:
            string_list.append(str(value))
    parameter_string = ",".join(string_list)

    if verbose:
        print('BR prep time:', time.time() - _prep_time)
    #
    # generate and compile new cython code if necessary
    #
    if not options.rhs_reuse or config.tdfunc is None:
        if options.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        if verbose:
            _st = time.time()
        cgen = BR_Codegen(
            h_terms=len(H_terms),
            h_td_terms=H_td_terms,
            h_obj=H_obj,
            c_terms=len(C_terms),
            c_td_terms=C_td_terms,
            c_obj=CA_obj,
            a_terms=len(A_terms),
            a_td_terms=A_td_terms,
            spline_count=spline_count,
            coupled_ops=coupled_ops,
            coupled_lengths=coupled_lengths,
            coupled_spectra=coupled_spectra,
            config=config,
            sparse=False,
            use_secular=use_secular,
            sec_cutoff=sec_cutoff,
            args=args,
            use_openmp=options.use_openmp,
            omp_thresh=qset.openmp_thresh if qset.has_openmp else None,
            omp_threads=options.num_cpus,
            atol=tol)

        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs
        if verbose:
            print('BR compile time:', time.time() - _st)
    initial_vector = mat2vec(rho0.full()).ravel()

    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')', '<string>',
                   'exec')
    _ode.set_integrator('zvode',
                        method=options.method,
                        order=options.order,
                        atol=options.atol,
                        rtol=options.rtol,
                        nsteps=options.nsteps,
                        first_step=options.first_step,
                        min_step=options.min_step,
                        max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar) == BaseProgressBar and verbose:
        _run_time = time.time()

    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0],
                                                rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()

    if type(progress_bar) == BaseProgressBar and verbose:
        print('BR runtime:', time.time() - _run_time)

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0],
                                            rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #38
0
ファイル: mcsolve_f90.py プロジェクト: Marata459/qutip
def _gather(sols):
    # gather list of Result objects, sols, into one.
    sol = Result()
    # sol = sols[0]
    ntraj = sum([a.ntraj for a in sols])
    sol.col_times = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_which = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_times[0:sols[0].ntraj] = sols[0].col_times
    sol.col_which[0:sols[0].ntraj] = sols[0].col_which
    sol.states = np.array(sols[0].states)
    sol.expect = np.array(sols[0].expect)
    if (hasattr(sols[0], 'entropy')):
        sol.entropy = np.array(sols[0].entropy)
    sofar = 0
    for j in range(1, len(sols)):
        sofar = sofar + sols[j - 1].ntraj
        sol.col_times[sofar:sofar + sols[j].ntraj] = (
            sols[j].col_times)
        sol.col_which[sofar:sofar + sols[j].ntraj] = (
            sols[j].col_which)
        if (config.e_num == 0):
            if (config.options.average_states):
                # collect states, averaged over trajectories
                sol.states += np.array(sols[j].states)
            else:
                # collect states, all trajectories
                sol.states = np.vstack((sol.states,
                                        np.array(sols[j].states)))
        else:
            if (config.options.average_expect):
                # collect expectation values, averaged
                for i in range(config.e_num):
                    sol.expect[i] += np.array(sols[j].expect[i])
            else:
                # collect expectation values, all trajectories
                sol.expect = np.vstack((sol.expect,
                                        np.array(sols[j].expect)))
        if (hasattr(sols[j], 'entropy')):
            if (config.options.average_states or
                    config.options.average_expect):
                # collect entropy values, averaged
                sol.entropy += np.array(sols[j].entropy)
            else:
                # collect entropy values, all trajectories
                sol.entropy = np.vstack((sol.entropy,
                                         np.array(sols[j].entropy)))
    if (config.options.average_states or config.options.average_expect):
        if (config.e_num == 0):
            sol.states = sol.states / len(sols)
        else:
            sol.expect = list(sol.expect / len(sols))
            inds = np.where(config.e_ops_isherm)[0]
            for jj in inds:
                sol.expect[jj] = np.real(sol.expect[jj])
        if (hasattr(sols[0], 'entropy')):
            sol.entropy = sol.entropy / len(sols)

    # convert sol.expect array to list and fix dtypes of arrays
    if (not config.options.average_expect) and config.e_num != 0:
        temp = [list(sol.expect[ii]) for ii in range(ntraj)]
        for ii in range(ntraj):
            for jj in np.where(config.e_ops_isherm)[0]:
                temp[ii][jj] = np.real(temp[ii][jj])
        sol.expect = temp
    # convert to list/array to be consistent with qutip mcsolve
    sol.states = list(sol.states)
    return sol
コード例 #39
0
ファイル: bloch_redfield.py プロジェクト: rfajri27/qutip-1
def brmesolve(H,
              psi0,
              tlist,
              a_ops=[],
              e_ops=[],
              c_ops=[],
              args={},
              use_secular=True,
              sec_cutoff=0.1,
              tol=qset.atol,
              spectra_cb=None,
              options=None,
              progress_bar=None,
              _safe_mode=True,
              verbose=False):
    """
    Solves for the dynamics of a system using the Bloch-Redfield master equation,
    given an input Hamiltonian, Hermitian bath-coupling terms and their associated 
    spectrum functions, as well as possible Lindblad collapse operators.
              
    For time-independent systems, the Hamiltonian must be given as a Qobj,
    whereas the bath-coupling terms (a_ops), must be written as a nested list
    of operator - spectrum function pairs, where the frequency is specified by
    the `w` variable.
              
    *Example*

        a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] 
              
    For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse
    operators (c_ops), can be specified in the QuTiP string-based time-dependent
    format.  For the a_op spectra, the frequency variable must be `w`, and the 
    string cannot contain any other variables other than the possibility of having
    a time-dependence through the time variable `t`:
                            
    *Example*

        a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']]
              
    It is also possible to use Cubic_Spline objects for time-dependence.  In
    the case of a_ops, Cubic_Splines must be passed as a tuple:
              
    *Example*
              
        a_ops = [ [a+a.dag(), ( f(w), g(t)] ]
              
    where f(w) and g(t) are strings or Cubic_spline objects for the bath
    spectrum and time-dependence, respectively.
              
    Finally, if one has bath-couplimg terms of the form
    H = f(t)*a + conj[f(t)]*a.dag(), then the correct input format is
              
    *Example*
    
              a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],... ]

    where f(w) is the spectrum of the operators while g1(t) and g2(t)
    are the time-dependence of the operators `a` and `a.dag()`, respectively 
    
    Parameters
    ----------
    H : Qobj / list
        System Hamiltonian given as a Qobj or
        nested list in string-based format.

    psi0: Qobj
        Initial density matrix or state vector (ket).

    tlist : array_like
        List of times for evaluating evolution

    a_ops : list
        Nested list of Hermitian system operators that couple to 
        the bath degrees of freedom, along with their associated
        spectra.

    e_ops : list
        List of operators for which to evaluate expectation values.

    c_ops : list
        List of system collapse operators, or nested list in
        string-based format.

    args : dict 
        Placeholder for future implementation, kept for API consistency.

    use_secular : bool {True}
        Use secular approximation when evaluating bath-coupling terms.
    
    sec_cutoff : float {0.1}
        Cutoff for secular approximation.
    
    tol : float {qutip.setttings.atol}
        Tolerance used for removing small values after 
        basis transformation.
              
    spectra_cb : list
        DEPRECIATED. Do not use.
    
    options : :class:`qutip.solver.Options`
        Options for the solver.
              
    progress_bar : BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation.

    Returns
    -------
    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """
    _prep_time = time.time()
    #This allows for passing a list of time-independent Qobj
    #as allowed by mesolve
    if isinstance(H, list):
        if np.all([isinstance(h, Qobj) for h in H]):
            H = sum(H)

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    if not (spectra_cb is None):
        warnings.warn("The use of spectra_cb is depreciated.",
                      DeprecationWarning)
        _a_ops = []
        for kk, a in enumerate(a_ops):
            _a_ops.append([a, spectra_cb[kk]])
        a_ops = _a_ops

    if _safe_mode:
        _solver_safety_check(H, psi0, a_ops + c_ops, e_ops, args)

    # check for type (if any) of time-dependent inputs
    _, n_func, n_str = _td_format_check(H, a_ops + c_ops)

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()

    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.reset()

    #check if should use OPENMP
    check_use_openmp(options)

    if n_str == 0:

        R, ekets = bloch_redfield_tensor(H,
                                         a_ops,
                                         spectra_cb=None,
                                         c_ops=c_ops,
                                         use_secular=use_secular,
                                         sec_cutoff=sec_cutoff)

        output = Result()
        output.solver = "brmesolve"
        output.times = tlist

        results = bloch_redfield_solve(R,
                                       ekets,
                                       psi0,
                                       tlist,
                                       e_ops,
                                       options,
                                       progress_bar=progress_bar)

        if e_ops:
            output.expect = results
        else:
            output.states = results

        return output

    elif n_str != 0 and n_func == 0:
        output = _td_brmesolve(H,
                               psi0,
                               tlist,
                               a_ops=a_ops,
                               e_ops=e_ops,
                               c_ops=c_ops,
                               args=args,
                               use_secular=use_secular,
                               sec_cutoff=sec_cutoff,
                               tol=tol,
                               options=options,
                               progress_bar=progress_bar,
                               _safe_mode=_safe_mode,
                               verbose=verbose,
                               _prep_time=_prep_time)

        return output

    else:
        raise Exception('Cannot mix func and str formats.')
コード例 #40
0
ファイル: essolve.py プロジェクト: prvn16/qutip
def essolve(H, rho0, tlist, c_op_list, e_ops):
    """
    Evolution of a state vector or density matrix (`rho0`) for a given
    Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by
    expressing the ODE as an exponential series. The output is either
    the state vector at arbitrary points in time (`tlist`), or the
    expectation values of the supplied operators (`e_ops`).

    Parameters
    ----------
    H : qobj/function_type
        System Hamiltonian.

    rho0 : :class:`qutip.qobj`
        Initial state density matrix.

    tlist : list/array
        ``list`` of times for :math:`t`.

    c_op_list : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` collapse operators.

    e_ops : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` operators for which to evaluate
        expectation values.


    Returns
    -------
     expt_array : array
        Expectation values of wavefunctions/density matrices for the
        times specified in ``tlist``.


    .. note:: This solver does not support time-dependent Hamiltonians.

    """
    n_expt_op = len(e_ops)
    n_tsteps = len(tlist)

    # Calculate the Liouvillian
    if (c_op_list is None or len(c_op_list) == 0) and isket(rho0):
        L = H
    else:
        L = liouvillian(H, c_op_list)

    es = ode2es(L, rho0)

    # evaluate the expectation values
    if n_expt_op == 0:
        results = [Qobj()] * n_tsteps
    else:
        results = np.zeros([n_expt_op, n_tsteps], dtype=complex)

    for n, e in enumerate(e_ops):
        results[n, :] = expect(e, esval(es, tlist))

    data = Result()
    data.solver = "essolve"
    data.times = tlist
    data.expect = [np.real(results[n, :]) if e.isherm else results[n, :] for n, e in enumerate(e_ops)]

    return data
コード例 #41
0
def floquet_markov_mesolve(
    R,
    rho0,
    tlist,
    e_ops,
    options=None,
    floquet_basis=True,
    f_modes_0=None,
    f_modes_table_t=None,
    f_energies=None,
    T=None,
):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.

    .. note::

        It is important to understand in which frame and basis the results
        are returned here.

    Parameters
    ----------

    R : array
        The Floquet-Markov master equation tensor `R`.

    rho0 : :class:`qutip.qobj`
        Initial density matrix.  If ``f_modes_0`` is not passed, this density
        matrix is assumed to be in the Floquet picture.

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values.

    options : :class:`qutip.solver`
        options for the ODE solver.

    floquet_basis: bool, True
        If ``True``, states and expectation values will be returned in the
        Floquet basis.  If ``False``, a transformation will be made to the
        computational basis; this will be in the lab frame if
        ``f_modes_table``, ``T` and ``f_energies`` are all supplied, or the
        interaction picture (defined purely be f_modes_0) if they are not.

    f_modes_0 : list of :class:`qutip.qobj` (kets), optional
        A list of initial Floquet modes, used to transform the given starting
        density matrix into the Floquet basis.  If this is not passed, it is
        assumed that ``rho`` is already in the Floquet basis.

    f_modes_table_t : nested list of :class:`qutip.qobj` (kets), optional
        A lookup-table of Floquet modes at times precalculated by
        :func:`qutip.floquet.floquet_modes_table`.  Necessary if
        ``floquet_basis`` is ``False`` and the transformation should be made
        back to the lab frame.

    f_energies : array_like of float, optional
        The precalculated Floquet quasienergies.  Necessary if
        ``floquet_basis`` is ``False`` and the transformation should be made
        back to the lab frame.

    T : float, optional
        The time period of driving.  Necessary if ``floquet_basis`` is
        ``False`` and the transformation should be made back to the lab frame.

    Returns
    -------

    output : :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """
    opt = options or Options()
    if opt.tidy:
        R.tidyup()
    rho0 = rho0.proj() if rho0.isket else rho0

    # Prepare output object.
    dt = tlist[1] - tlist[0]
    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist
    if isinstance(e_ops, FunctionType):
        expt_callback = True
        store_states = opt.store_states or False
    else:
        expt_callback = False
        try:
            e_ops = list(e_ops)
        except TypeError:
            raise TypeError("`e_ops` must be iterable or a function") from None
        n_expt_op = len(e_ops)
        if n_expt_op == 0:
            store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                dtype = np.float64 if op.isherm else np.complex128
                output.expect.append(np.zeros(len(tlist), dtype=dtype))
        store_states = opt.store_states or (n_expt_op == 0)
    if store_states:
        output.states = []

    # Choose which frame transformations should be done on the initial and
    # evolved states.
    lab_lookup = [f_modes_table_t, f_energies, T]
    if (any(x is None for x in lab_lookup)
            and not all(x is None for x in lab_lookup)):
        warnings.warn(
            "if transformation back to the computational basis in the lab"
            "frame is desired, all of `f_modes_t`, `f_energies` and `T` must"
            "be supplied.")
        f_modes_table_t = f_energies = T = None

    # Initial state.
    if f_modes_0 is not None:
        rho0 = rho0.transform(f_modes_0)

    # Evolved states.
    if floquet_basis:

        def transform(rho, t):
            return rho
    elif f_modes_table_t is not None:
        # Lab frame, computational basis.
        def transform(rho, t):
            f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
            f_states_t = floquet_states(f_modes_t, f_energies, t)
            return rho.transform(f_states_t, True)
    elif f_modes_0 is not None:
        # Interaction picture, computational basis.
        def transform(rho, t):
            return rho.transform(f_modes_0, False)
    else:
        raise ValueError(
            "cannot transform out of the Floquet basis without some knowledge "
            "of the Floquet modes.  Pass `f_modes_0`, or all of `f_modes_t`, "
            "`f_energies` and `T`.")

    # Setup integrator.
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    # Main evolution loop.
    for t_idx, t in enumerate(tlist):
        if not r.successful():
            break
        rho = transform(Qobj(vec2mat(r.y), rho0.dims, rho0.shape), t)
        if expt_callback:
            e_ops(t, rho)
        else:
            for m, e_op in enumerate(e_ops):
                output.expect[m][t_idx] = expect(e_op, rho)
        if store_states:
            output.states.append(rho)
        r.integrate(r.t + dt)
    return output