コード例 #1
0
def _smepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See smepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "smepdpsolve"
    data.times = sso.times
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian(sso.H, sso.c_ops)

    progress_bar.start(sso.ntraj)

    for n in range(sso.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(sso.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, sso.times,
                                           N_store, N_substeps,
                                           rho_t, sso.rho0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [
            sum([data.states[m][n] for m in range(nt)]).unit()
            for n in range(len(data.times))
        ]

    # average
    data.expect = data.expect / sso.ntraj

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect**2)) / (nt * (nt - 1))
    else:
        data.se = None

    return data
コード例 #2
0
ファイル: pdpsolve.py プロジェクト: sahmed95/qutip
def _smepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See smepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "smepdpsolve"
    data.times = sso.times
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian(sso.H, sso.c_ops)

    progress_bar.start(sso.ntraj)

    for n in range(sso.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(sso.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, sso.times,
                                           N_store, N_substeps,
                                           rho_t, sso.rho0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / sso.ntraj

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    return data
コード例 #3
0
ファイル: heom.py プロジェクト: pyquantum/matsubara
    def solve(self, rho0, tlist, options=None, progress=None):
        """
        Solve the Hierarchy equations of motion for the given initial
        density matrix and time.
        """
        if options is None:
            options = Options()

        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []
        output.states.append(Qobj(rho0))

        dt = np.diff(tlist)
        rho_he = np.zeros(self.hshape, dtype=np.complex)
        rho_he[0] = rho0.full().ravel("F")
        rho_he = rho_he.flatten()

        self.rhs()
        L_helems = self.L_helems.asformat("csr")
        r = ode(cy_ode_rhs)
        r.set_f_params(L_helems.data, L_helems.indices, L_helems.indptr)
        r.set_integrator(
            "zvode",
            method=options.method,
            order=options.order,
            atol=options.atol,
            rtol=options.rtol,
            nsteps=options.nsteps,
            first_step=options.first_step,
            min_step=options.min_step,
            max_step=options.max_step,
        )

        r.set_initial_value(rho_he, tlist[0])
        dt = np.diff(tlist)
        n_tsteps = len(tlist)

        if progress:
            bar = progress(total=n_tsteps - 1)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                r1 = r.y.reshape(self.hshape)
                r0 = r1[0].reshape(self.N, self.N).T
                output.states.append(Qobj(r0))

                r_heom = r.y.reshape(self.hshape)
                self.full_hierarchy.append(r_heom)

                if progress:
                    bar.update()
        return output
コード例 #4
0
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        sup_dim = self._sup_dim
        
        solver = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")

        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F') 
        rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        solver.set_initial_value(rho0_he, tlist[0])

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                solver.integrate(solver.t + dt[t_idx])
                rho = Qobj(solver.y[:sup_dim].reshape(rho0.shape,order='F'), dims=rho0.dims)
                output.states.append(rho)

        return output
        
コード例 #5
0
    def get_result(self, ntraj=[]):
        # Store results in the Result object
        if not ntraj:
            ntraj = [self.num_traj]
        elif not isinstance(ntraj, list):
            ntraj = [ntraj]

        output = Result()
        output.solver = 'mcsolve'
        output.seeds = self.seeds

        options = self.options
        output.options = options

        if options.steady_state_average:
            output.states = self.steady_state
        elif options.average_states and options.store_states:
            output.states = self.states
        elif options.store_states:
            output.states = self.runs_states

        if options.store_final_state:
            if options.average_states:
                output.final_state = self.final_state
            else:
                output.final_state = self.runs_final_states

        if options.average_expect:
            output.expect = [self.expect_traj_avg(n) for n in ntraj]
            if len(output.expect) == 1:
                output.expect = output.expect[0]
        else:
            output.expect = self.runs_expect

        # simulation parameters
        output.times = self.tlist
        output.num_expect = self.e_ops.e_num
        output.num_collapse = len(self.ss.td_c_ops)
        output.ntraj = self.num_traj
        output.col_times = self.collapse_times
        output.col_which = self.collapse_which

        return output
コード例 #6
0
ファイル: piqs.py プロジェクト: jenshnielsen/qutip
 def solve(self, rho0, tlist, options=None):
     """
     Solve the ODE for the evolution of diagonal states and Hamiltonians.
     """
     if options is None:
         options = Options()
     output = Result()
     output.solver = "pisolve"
     output.times = tlist
     output.states = []
     output.states.append(Qobj(rho0))
     rhs_generate = lambda y, tt, M: M.dot(y)
     rho0_flat = np.diag(np.real(rho0.full()))
     L = self.coefficient_matrix()
     rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,))
     for r in rho_t[1:]:
         diag = np.diag(r)
         output.states.append(Qobj(diag))
     return output
コード例 #7
0
ファイル: piqs.py プロジェクト: likun1212/qutip
 def solve(self, rho0, tlist, options=None):
     """
     Solve the ODE for the evolution of diagonal states and Hamiltonians.
     """
     if options is None:
         options = Options()
     output = Result()
     output.solver = "pisolve"
     output.times = tlist
     output.states = []
     output.states.append(Qobj(rho0))
     rhs_generate = lambda y, tt, M: M.dot(y)
     rho0_flat = np.diag(np.real(rho0.full()))
     L = self.coefficient_matrix()
     rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L, ))
     for r in rho_t[1:]:
         diag = np.diag(r)
         output.states.append(Qobj(diag))
     return output
コード例 #8
0
ファイル: essolve.py プロジェクト: yanghf263/qutip
def essolve(H, rho0, tlist, c_op_list, e_ops):
    """
    Evolution of a state vector or density matrix (`rho0`) for a given
    Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by
    expressing the ODE as an exponential series. The output is either
    the state vector at arbitrary points in time (`tlist`), or the
    expectation values of the supplied operators (`e_ops`).

    .. deprecated:: 4.6.0
        :obj:`~essolev` will be removed in QuTiP 5.  Please use :obj:`~sesolve`
        or :obj:`~mesolve` for general-purpose integration of the
        Schroedinger/Lindblad master equation.  This will likely be faster than
        :obj:`~essolve` for you.

    Parameters
    ----------
    H : qobj/function_type
        System Hamiltonian.

    rho0 : :class:`qutip.qobj`
        Initial state density matrix.

    tlist : list/array
        ``list`` of times for :math:`t`.

    c_op_list : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` collapse operators.

    e_ops : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` operators for which to evaluate
        expectation values.


    Returns
    -------
     expt_array : array
        Expectation values of wavefunctions/density matrices for the
        times specified in ``tlist``.


    .. note:: This solver does not support time-dependent Hamiltonians.

    """
    n_expt_op = len(e_ops)
    n_tsteps = len(tlist)

    # Calculate the Liouvillian
    if (c_op_list is None or len(c_op_list) == 0) and isket(rho0):
        L = H
    else:
        L = liouvillian(H, c_op_list)

    es = ode2es(L, rho0)

    # evaluate the expectation values
    if n_expt_op == 0:
        results = [Qobj()] * n_tsteps
    else:
        results = np.zeros([n_expt_op, n_tsteps], dtype=complex)

    for n, e in enumerate(e_ops):
        results[n, :] = expect(e, esval(es, tlist))

    data = Result()
    data.solver = "essolve"
    data.times = tlist
    data.expect = [
        np.real(results[n, :]) if e.isherm else results[n, :]
        for n, e in enumerate(e_ops)
    ]

    return data
コード例 #9
0
ファイル: floquet.py プロジェクト: vamsi1905/qutip
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
    """
    Solve the Schrodinger equation using the Floquet formalism.

    Parameters
    ----------

    H : :class:`qutip.qobj.Qobj`
        System Hamiltonian, time-dependent with period `T`.

    psi0 : :class:`qutip.qobj`
        Initial state vector (ket).

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values. If this
        list is empty, the state vectors for each time in `tlist` will be
        returned instead of expectation values.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    Tsteps : integer
        The number of time steps in one driving period for which to
        precalculate the Floquet modes. `Tsteps` should be an even number.

    Returns
    -------

    output : :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """

    if not T:
        # assume that tlist span exactly one period of the driving
        T = tlist[-1]

    # find the floquet modes for the time-dependent hamiltonian
    f_modes_0, f_energies = floquet_modes(H, T, args)

    # calculate the wavefunctions using the from the floquet modes
    f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                          np.linspace(0, T, Tsteps + 1), H, T,
                                          args)

    # setup Result for storing the results
    output = Result()
    output.times = tlist
    output.solver = "fsesolve"

    if isinstance(e_ops, FunctionType):
        output.num_expect = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        output.num_expect = len(e_ops)
        expt_callback = False

        if output.num_expect == 0:
            output.states = []
        else:
            output.expect = []
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(len(tlist)))
                else:
                    output.expect.append(np.zeros(len(tlist), dtype=complex))

    else:
        raise TypeError("e_ops must be a list Qobj or a callback function")

    psi0_fb = psi0.transform(f_modes_0)
    for t_idx, t in enumerate(tlist):
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        f_states_t = floquet_states(f_modes_t, f_energies, t)
        psi_t = psi0_fb.transform(f_states_t, True)

        if expt_callback:
            # use callback method
            e_ops(t, psi_t)
        else:
            # calculate all the expectation values, or output psi if
            # no expectation value operators where defined
            if output.num_expect == 0:
                output.states.append(Qobj(psi_t))
            else:
                for e_idx, e in enumerate(e_ops):
                    output.expect[e_idx][t_idx] = expect(e, psi_t)

    return output
コード例 #10
0
ファイル: mesolve.py プロジェクト: qutip/qutip
def _generic_ode_solve(func,
                       ode_args,
                       rho0,
                       tlist,
                       e_ops,
                       opt,
                       progress_bar,
                       dims=None):
    """
    Internal function for solving ME.
    Calculate the required expectation values or invoke
    callback function at each time step.
    """
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # This function is made similar to sesolve's one for futur merging in a
    # solver class
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    # prepare output array
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "mesolve"
    output.times = tlist
    size = rho0.shape[0]

    initial_vector = rho0.full().ravel('F')

    r = scipy.integrate.ode(func)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    if ode_args:
        r.set_f_params(*ode_args)
    r.set_initial_value(initial_vector, tlist[0])

    e_ops_data = []
    output.expect = []
    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True
        output.num_expect = 1
    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False
        output.num_expect = n_expt_op
        if n_expt_op == 0:
            # fall back on storing states
            opt.store_states = True
        else:
            for op in e_ops:
                if not isinstance(op, Qobj) and callable(op):
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
                    continue
                if op.dims != rho0.dims:
                    raise TypeError(f"e_ops dims ({op.dims}) are not "
                                    f"compatible with the state's "
                                    f"({rho0.dims})")
                e_ops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    if opt.store_states:
        output.states = []

    def get_curr_state_data(r):
        return vec2mat(r.y)

    #
    # start evolution
    #
    dt = np.diff(tlist)
    cdata = None
    progress_bar.start(n_tsteps)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            cdata = get_curr_state_data(r)
            fdata = dense2D_to_fastcsr_fmode(cdata, size, size)

            # Try to guess if there is a fast path for rho_t
            if issuper(rho0) or not rho0.isherm:
                rho_t = Qobj(fdata, dims=dims)
            else:
                rho_t = Qobj(fdata, dims=dims, fast="mc-dm")

        if opt.store_states:
            output.states.append(rho_t)

        if expt_callback:
            # use callback method
            output.expect.append(e_ops(t, rho_t))

        for m in range(n_expt_op):
            if not isinstance(e_ops[m], Qobj) and callable(e_ops[m]):
                output.expect[m][t_idx] = e_ops[m](t, rho_t)
                continue
            output.expect[m][t_idx] = expect_rho_vec(
                e_ops_data[m], r.y, e_ops[m].isherm and rho0.isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if opt.store_final_state:
        cdata = get_curr_state_data(r)
        output.final_state = Qobj(cdata, dims=dims, isherm=rho0.isherm or None)

    return output
コード例 #11
0
ファイル: transfertensor.py プロジェクト: yanghf263/qutip
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    if rho0.isoper:
        # vectorize density matrix
        rho0vec = operator_to_vector(rho0)
    else:
        # rho0 might be a super in which case we should not vectorize
        rho0vec = rho0

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
コード例 #12
0
ファイル: bloch_redfield.py プロジェクト: ajgpitch/qutip
def brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[],
              args={}, use_secular=True, sec_cutoff = 0.1,
              tol=qset.atol,
              spectra_cb=None, options=None,
              progress_bar=None, _safe_mode=True, verbose=False):
    """
    Solves for the dynamics of a system using the Bloch-Redfield master equation,
    given an input Hamiltonian, Hermitian bath-coupling terms and their associated 
    spectrum functions, as well as possible Lindblad collapse operators.
              
    For time-independent systems, the Hamiltonian must be given as a Qobj,
    whereas the bath-coupling terms (a_ops), must be written as a nested list
    of operator - spectrum function pairs, where the frequency is specified by
    the `w` variable.
              
    *Example*

        a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] 
              
    For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse
    operators (c_ops), can be specified in the QuTiP string-based time-dependent
    format.  For the a_op spectra, the frequency variable must be `w`, and the 
    string cannot contain any other variables other than the possibility of having
    a time-dependence through the time variable `t`:
                            
    *Example*

        a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']]
              
    It is also possible to use Cubic_Spline objects for time-dependence.  In
    the case of a_ops, Cubic_Splines must be passed as a tuple:
              
    *Example*
              
        a_ops = [ [a+a.dag(), ( f(w), g(t)] ]
              
    where f(w) and g(t) are strings or Cubic_spline objects for the bath
    spectrum and time-dependence, respectively.
              
    Finally, if one has bath-couplimg terms of the form
    H = f(t)*a + conj[f(t)]*a.dag(), then the correct input format is
              
    *Example*
    
              a_ops = [ [(a,a.dag()), (f(w), g1(t), g2(t))],... ]

    where f(w) is the spectrum of the operators while g1(t) and g2(t)
    are the time-dependence of the operators `a` and `a.dag()`, respectively 
    
    Parameters
    ----------
    H : Qobj / list
        System Hamiltonian given as a Qobj or
        nested list in string-based format.

    psi0: Qobj
        Initial density matrix or state vector (ket).

    tlist : array_like
        List of times for evaluating evolution

    a_ops : list
        Nested list of Hermitian system operators that couple to 
        the bath degrees of freedom, along with their associated
        spectra.

    e_ops : list
        List of operators for which to evaluate expectation values.

    c_ops : list
        List of system collapse operators, or nested list in
        string-based format.

    args : dict 
        Placeholder for future implementation, kept for API consistency.

    use_secular : bool {True}
        Use secular approximation when evaluating bath-coupling terms.
    
    sec_cutoff : float {0.1}
        Cutoff for secular approximation.
    
    tol : float {qutip.setttings.atol}
        Tolerance used for removing small values after 
        basis transformation.
              
    spectra_cb : list
        DEPRECIATED. Do not use.
    
    options : :class:`qutip.solver.Options`
        Options for the solver.
              
    progress_bar : BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation.

    Returns
    -------
    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """
    _prep_time = time.time()
    #This allows for passing a list of time-independent Qobj
    #as allowed by mesolve
    if isinstance(H, list):
        if np.all([isinstance(h,Qobj) for h in H]):
            H = sum(H)
    
    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None
    
    if not (spectra_cb is None):
        warnings.warn("The use of spectra_cb is depreciated.", DeprecationWarning)
        _a_ops = []
        for kk, a in enumerate(a_ops):
            _a_ops.append([a,spectra_cb[kk]])
        a_ops = _a_ops

    if _safe_mode:
        _solver_safety_check(H, psi0, a_ops+c_ops, e_ops, args)
    
    # check for type (if any) of time-dependent inputs
    _, n_func, n_str = _td_format_check(H, a_ops+c_ops)
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()
        
    if options is None:
        options = Options()

    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.reset()
    
    #check if should use OPENMP
    check_use_openmp(options)
    
    if n_str == 0:
    
        R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb=None, c_ops=c_ops,
                    use_secular=use_secular, sec_cutoff=sec_cutoff)

        output = Result()
        output.solver = "brmesolve"
        output.times = tlist

        results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options,
                    progress_bar=progress_bar)

        if e_ops:
            output.expect = results
        else:
            output.states = results

        return output
        
    elif n_str != 0 and n_func == 0:
        output = _td_brmesolve(H, psi0, tlist, a_ops=a_ops, e_ops=e_ops, 
                        c_ops=c_ops, args=args, use_secular=use_secular, 
                        sec_cutoff=sec_cutoff,
                        tol=tol, options=options, 
                         progress_bar=progress_bar,
                         _safe_mode=_safe_mode, verbose=verbose, 
                         _prep_time=_prep_time)
                         
        return output
        
    else:
        raise Exception('Cannot mix func and str formats.')
コード例 #13
0
ファイル: essolve.py プロジェクト: Marata459/qutip
def essolve(H, rho0, tlist, c_op_list, e_ops):
    """
    Evolution of a state vector or density matrix (`rho0`) for a given
    Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by
    expressing the ODE as an exponential series. The output is either
    the state vector at arbitrary points in time (`tlist`), or the
    expectation values of the supplied operators (`e_ops`).

    Parameters
    ----------
    H : qobj/function_type
        System Hamiltonian.

    rho0 : :class:`qutip.qobj`
        Initial state density matrix.

    tlist : list/array
        ``list`` of times for :math:`t`.

    c_op_list : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` collapse operators.

    e_ops : list of :class:`qutip.qobj`
        ``list`` of :class:`qutip.qobj` operators for which to evaluate
        expectation values.


    Returns
    -------
     expt_array : array
        Expectation values of wavefunctions/density matrices for the
        times specified in ``tlist``.


    .. note:: This solver does not support time-dependent Hamiltonians.

    """
    n_expt_op = len(e_ops)
    n_tsteps = len(tlist)

    # Calculate the Liouvillian
    if (c_op_list is None or len(c_op_list) == 0) and isket(rho0):
        L = H
    else:
        L = liouvillian(H, c_op_list)

    es = ode2es(L, rho0)

    # evaluate the expectation values
    if n_expt_op == 0:
        results = [Qobj()] * n_tsteps
    else:
        results = np.zeros([n_expt_op, n_tsteps], dtype=complex)

    for n, e in enumerate(e_ops):
        results[n, :] = expect(e, esval(es, tlist))

    data = Result()
    data.solver = "essolve"
    data.times = tlist
    data.expect = [np.real(results[n, :]) if e.isherm else results[n, :]
                   for n, e in enumerate(e_ops)]

    return data
コード例 #14
0
ファイル: sesolve.py プロジェクト: kaustubhmote/qutip
def _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, opt,
                       progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # This function is made similar to mesolve's one for futur merging in a
    # solver class
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    # prepare output array
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        initial_vector = psi0.full().ravel('F')
        oper_evo = True
        size = psi0.shape[0]
        # oper_n = dims[0][0]
        # norm_dim_factor = np.sqrt(oper_n)
    elif psi0.isket:
        initial_vector = psi0.full().ravel()
        oper_evo = False
        # norm_dim_factor = 1.0

    r = scipy.integrate.ode(func)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    if ode_args:
        r.set_f_params(*ode_args)
    r.set_initial_value(initial_vector, tlist[0])

    e_ops_data = []
    output.expect = []
    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True
        output.num_expect = 1
    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False
        output.num_expect = n_expt_op
        if n_expt_op == 0:
            # fallback on storing states
            opt.store_states = True
        else:
            for op in e_ops:
                if not isinstance(op, Qobj) and callable(op):
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
                    continue
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
        if oper_evo:
            for e in e_ops:
                if isinstance(e, Qobj):
                    e_ops_data.append(e.dag().data)
                    continue
                e_ops_data.append(e)
        else:
            for e in e_ops:
                if isinstance(e, Qobj):
                    e_ops_data.append(e.data)
                    continue
                e_ops_data.append(e)
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    if opt.store_states:
        output.states = []

    if oper_evo:
        def get_curr_state_data(r):
            return vec2mat(r.y)
    else:
        def get_curr_state_data(r):
            return r.y

    #
    # start evolution
    #
    dt = np.diff(tlist)
    cdata = None
    progress_bar.start(n_tsteps)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)
        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")
        # get the current state / oper data if needed
        if opt.store_states or opt.normalize_output \
           or n_expt_op > 0 or expt_callback:
            cdata = get_curr_state_data(r)

        if opt.normalize_output:
            # normalize per column
            if oper_evo:
                cdata /= la_norm(cdata, axis=0)
                #cdata *= norm_dim_factor / la_norm(cdata)
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                #cdata /= la_norm(cdata)
                norm = normalize_inplace(cdata)
                if norm > 1e-12:
                    # only reset the solver if state changed
                    r.set_initial_value(cdata, r.t)
                else:
                    r._y = cdata

        if opt.store_states:
            if oper_evo:
                fdata = dense2D_to_fastcsr_fmode(cdata, size, size)
                output.states.append(Qobj(fdata, dims=dims))
            else:
                fdata = dense1D_to_fastcsr_ket(cdata)
                output.states.append(Qobj(fdata, dims=dims, fast='mc'))

        if expt_callback:
            # use callback method
            output.expect.append(e_ops(t, Qobj(cdata, dims=dims)))

        if oper_evo:
            for m in range(n_expt_op):
                if callable(e_ops_data[m]):
                    func = e_ops_data[m]
                    output.expect[m][t_idx] = func(t, Qobj(cdata, dims=dims))
                    continue
                output.expect[m][t_idx] = (e_ops_data[m] * cdata).trace()
        else:
            for m in range(n_expt_op):
                if callable(e_ops_data[m]):
                    func = e_ops_data[m]
                    output.expect[m][t_idx] = func(t, Qobj(cdata, dims=dims))
                    continue
                output.expect[m][t_idx] = cy_expect_psi(e_ops_data[m], cdata,
                                                        e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if opt.store_final_state:
        cdata = get_curr_state_data(r)
        if opt.normalize_output:
            cdata /= la_norm(cdata, axis=0)
            # cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output
コード例 #15
0
ファイル: sesolve.py プロジェクト: Marata459/qutip
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar,
                       state_norm_func=None, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    r.y, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y)

    return output
コード例 #16
0
def generic_ode_solve_checkpoint(r, rho0, tlist, e_ops, opt, progress_bar,
                                 save, subdir):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    e_ops_dict = e_ops
    e_ops = [e for e in e_ops_dict.values()]
    headings = [key for key in e_ops_dict.keys()]

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    results_row = np.zeros(n_expt_op)

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)
    dims = rho.dims

    dt = np.diff(tlist)

    end_time = tlist[-1]

    for t_idx, t in tqdm(enumerate(tlist)):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
                results_row[m] = output.expect[m][t_idx]
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)
                results_row[m] = output.expect[m][t_idx]

        results = pd.DataFrame(results_row).T
        results.columns = headings
        results.index = [t]
        results.index.name = 'times'
        if t == 0:
            first_row = True
        else:
            first_row = False
        if save:

            rho_checkpoint = Qobj(vec2mat(r.y))
            rho_checkpoint.dims = dims

            if t_idx % 200 == 0:
                rho_c = rho_checkpoint.ptrace(0)
                with open('./cavity_states.pkl', 'ab') as f:
                    pickle.dump(rho_c, f)

            with open('./results.csv', 'a') as file:
                results.to_csv(file, header=first_row, float_format='%.15f')

            qsave(rho_checkpoint, './state_checkpoint')

        save = True

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        _cython_build_cleanup(config.tdname)

    return output
コード例 #17
0
ファイル: mcsolve.py プロジェクト: ntezak/qutip
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=Options()):
    """Monte-Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H=[H0,[H1,H1_coeff]]

        c_op_list=[C0,[C1,C1_coeff]]

        args={'a':A,'w':W}

    or in String (Cython) format we could write::

        H=[H0,[H1,'sin(w*t)']]

        c_op_list=[C0,[C1,'exp(-a*t)']]

        args={'a':A,'w':W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.
    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.
    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.
    options : Options
        Instance of ODE solver options.

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """

    if debug:
        print(inspect.stack()[0][3])

    if ntraj is None:
        ntraj = options.ntraj

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options
    if isinstance(ntraj, list):
        config.progress_bar = TextProgressBar(max(ntraj))
    else:
        config.progress_bar = TextProgressBar(ntraj)

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, ndarray)):
        config.ntraj = sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # ----------------------------------------------
    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # ----------------------------------------------
    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc")
        h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in array([1, 10, 11]):
            if any(args):
                config.c_args = []
                arg_items = args.items()
                for k in range(len(args)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in array([2, 3, 20, 22]):
            config.h_func_args = args

    # load monte-carlo class
    mc = _MC_class(config)

    # RUN THE SIMULATION
    mc.run()

    # remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    # AFTER MCSOLVER IS DONE --------------------------------------
    # ------- COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT --------------
    output = Result()
    output.solver = "mcsolve"
    # state vectors
    if mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1:
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out
    # expectation values
    elif mc.expect_out is not None and config.cflag and config.options.average_expect:
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [mean([mc.expect_out[nt][op] for nt in range(ntraj)], axis=0) for op in range(config.e_num)]
        elif isinstance(ntraj, (list, ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_states flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #18
0
def mcsolve_f90(H,
                psi0,
                tlist,
                c_ops,
                e_ops,
                ntraj=None,
                options=Options(),
                sparse_dms=True,
                serial=False,
                ptrace_sel=[],
                calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Options
        Instance of solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    config.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full()
    else:
        config.psi0 = psi0.full()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        config.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        config.soft_reset()
        # no time dependence
        config.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                      "a list of components to keep when calculating average" +
                      " entropy of reduced density matrix in ptrace_sel. " +
                      "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Result object
    output = Result()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj

    return output
コード例 #19
0
ファイル: pdpsolve.py プロジェクト: sahmed95/qutip
def _ssepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See ssepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "sepdpsolve"
    data.times = sso.tlist
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = sso.H
    for c in sso.c_ops:
        Heff += -0.5j * c.dag() * c

    progress_bar.start(sso.ntraj)
    for n in range(sso.ntraj):
        progress_bar.update(n)
        psi_t = sso.state0.full().ravel()

        states_list, jump_times, jump_op_idx = \
            _ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
                                           N_store, N_substeps,
                                           psi_t, sso.state0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / nt

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n, :])
                   if e.isherm else data.expect[n, :]
                   for n, e in enumerate(sso.e_ops)]

    return data
コード例 #20
0
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #21
0
ファイル: mesolve.py プロジェクト: anubhavvardhan/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #22
0
ファイル: mesolve.py プロジェクト: ramanujasimha/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0],
                                                rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0],
                                            rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #23
0
ファイル: bloch_redfield.py プロジェクト: JonathanUlm/qutip
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[],
              args={}, options=Options()):
    """
    Solve the dynamics for a system using the Bloch-Redfield master equation.

    .. note::

        This solver does not currently support time-dependent Hamiltonians.

    Parameters
    ----------

    H : :class:`qutip.Qobj`
        System Hamiltonian.

    rho0 / psi0: :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    tlist : *list* / *array*
        List of times for :math:`t`.

    a_ops : list of :class:`qutip.qobj`
        List of system operators that couple to bath degrees of freedom.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    c_ops : list of :class:`qutip.qobj`
        List of system collapse operators.

    args : *dictionary*
        Placeholder for future implementation, kept for API consistency.

    options : :class:`qutip.solver.Options`
        Options for the solver.

    Returns
    -------

    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """

    if not spectra_cb:
        # default to infinite temperature white noise
        spectra_cb = [lambda w: 1.0 for _ in a_ops]

    R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)

    if e_ops:
        output.expect = results
    else:
        output.states = results

    return output
コード例 #24
0
ファイル: bloch_redfield.py プロジェクト: ajgpitch/qutip
def _td_brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={},
                 use_secular=True, sec_cutoff=0.1,
                 tol=qset.atol, options=None, 
                 progress_bar=None,_safe_mode=True,
                 verbose=False,
                 _prep_time=0):
    
    if isket(psi0):
        rho0 = ket2dm(psi0)
    else:
        rho0 = psi0
    nrows = rho0.shape[0]
    
    H_terms = []
    H_td_terms = []
    H_obj = []
    A_terms = []
    A_td_terms = []
    C_terms = []
    C_td_terms = []
    CA_obj = []
    spline_count = [0,0]
    coupled_ops = []
    coupled_lengths = []
    coupled_spectra = []
    
    if isinstance(H, Qobj):
        H_terms.append(H.full('f'))
        H_td_terms.append('1')
    else: 
        for kk, h in enumerate(H):
            if isinstance(h, Qobj):
                H_terms.append(h.full('f'))
                H_td_terms.append('1')
            elif isinstance(h, list):
                H_terms.append(h[0].full('f'))
                if isinstance(h[1], Cubic_Spline):
                    H_obj.append(h[1].coeffs)
                    spline_count[0] += 1
                H_td_terms.append(h[1])
            else:
                raise Exception('Invalid Hamiltonian specification.')
    
            
    for kk, c in enumerate(c_ops):
        if isinstance(c, Qobj):
            C_terms.append(c.full('f'))
            C_td_terms.append('1')
        elif isinstance(c, list):
            C_terms.append(c[0].full('f'))
            if isinstance(c[1], Cubic_Spline):
                CA_obj.append(c[1].coeffs)
                spline_count[0] += 1
            C_td_terms.append(c[1])
        else:
            raise Exception('Invalid collapse operator specification.')
            
    coupled_offset = 0
    for kk, a in enumerate(a_ops):
        if isinstance(a, list):
            if isinstance(a[0], Qobj):
                A_terms.append(a[0].full('f'))
                A_td_terms.append(a[1])
                if isinstance(a[1], tuple):
                    if not len(a[1])==2:
                       raise Exception('Tuple must be len=2.')
                    if isinstance(a[1][0],Cubic_Spline):
                        spline_count[1] += 1
                    if isinstance(a[1][1],Cubic_Spline):
                        spline_count[1] += 1
            elif isinstance(a[0], tuple):
                if not isinstance(a[1], tuple):
                    raise Exception('Invalid bath-coupling specification.')
                if (len(a[0])+1) != len(a[1]):
                    raise Exception('BR a_ops tuple lengths not compatible.')
                
                coupled_ops.append(kk+coupled_offset)
                coupled_lengths.append(len(a[0]))
                coupled_spectra.append(a[1][0])
                coupled_offset += len(a[0])-1
                if isinstance(a[1][0],Cubic_Spline):
                    spline_count[1] += 1
                
                for nn, _a in enumerate(a[0]):
                    A_terms.append(_a.full('f'))
                    A_td_terms.append(a[1][nn+1])
                    if isinstance(a[1][nn+1],Cubic_Spline):
                        CA_obj.append(a[1][nn+1].coeffs)
                        spline_count[1] += 1
                                
        else:
            raise Exception('Invalid bath-coupling specification.')
            
    
    string_list = []
    for kk,_ in enumerate(H_td_terms):
        string_list.append("H_terms[{0}]".format(kk))
    for kk,_ in enumerate(H_obj):
        string_list.append("H_obj[{0}]".format(kk))
    for kk,_ in enumerate(C_td_terms):
        string_list.append("C_terms[{0}]".format(kk))
    for kk,_ in enumerate(CA_obj):
        string_list.append("CA_obj[{0}]".format(kk))
    for kk,_ in enumerate(A_td_terms):
        string_list.append("A_terms[{0}]".format(kk))
    #Add nrows to parameters
    string_list.append('nrows')
    for name, value in args.items():
        if isinstance(value, np.ndarray):
            raise TypeError('NumPy arrays not valid args for BR solver.')
        else:
            string_list.append(str(value))
    parameter_string = ",".join(string_list)
    
    if verbose:
        print('BR prep time:', time.time()-_prep_time)
    #
    # generate and compile new cython code if necessary
    #
    if not options.rhs_reuse or config.tdfunc is None:
        if options.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        if verbose:
            _st = time.time()
        cgen = BR_Codegen(h_terms=len(H_terms), 
                    h_td_terms=H_td_terms, h_obj=H_obj,
                    c_terms=len(C_terms), 
                    c_td_terms=C_td_terms, c_obj=CA_obj,
                    a_terms=len(A_terms), a_td_terms=A_td_terms,
                    spline_count=spline_count,
                    coupled_ops = coupled_ops,
                    coupled_lengths = coupled_lengths,
                    coupled_spectra = coupled_spectra,
                    config=config, sparse=False,
                    use_secular = use_secular,
                    sec_cutoff = sec_cutoff,
                    args=args,
                    use_openmp=options.use_openmp, 
                    omp_thresh=qset.openmp_thresh if qset.has_openmp else None,
                    omp_threads=options.num_cpus, 
                    atol=tol)
        
        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs
        if verbose:
            print('BR compile time:', time.time()-_st)
    initial_vector = mat2vec(rho0.full()).ravel()
    
    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')',
                    '<string>', 'exec')
    _ode.set_integrator('zvode', method=options.method, 
                    order=options.order, atol=options.atol, 
                    rtol=options.rtol, nsteps=options.nsteps,
                    first_step=options.first_step, 
                    min_step=options.min_step,
                    max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())
    
    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar)==BaseProgressBar and verbose:
        _run_time = time.time()
    
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()
    
    if type(progress_bar)==BaseProgressBar and verbose:
        print('BR runtime:', time.time()-_run_time)

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)
    
    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #25
0
ファイル: floquet.py プロジェクト: Marata459/qutip
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
    """
    Solve the Schrodinger equation using the Floquet formalism.

    Parameters
    ----------

    H : :class:`qutip.qobj.Qobj`
        System Hamiltonian, time-dependent with period `T`.

    psi0 : :class:`qutip.qobj`
        Initial state vector (ket).

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values. If this
        list is empty, the state vectors for each time in `tlist` will be
        returned instead of expectation values.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    Tsteps : integer
        The number of time steps in one driving period for which to
        precalculate the Floquet modes. `Tsteps` should be an even number.

    Returns
    -------

    output : :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """

    if not T:
        # assume that tlist span exactly one period of the driving
        T = tlist[-1]

    # find the floquet modes for the time-dependent hamiltonian
    f_modes_0, f_energies = floquet_modes(H, T, args)

    # calculate the wavefunctions using the from the floquet modes
    f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                          np.linspace(0, T, Tsteps + 1),
                                          H, T, args)

    # setup Result for storing the results
    output = Result()
    output.times = tlist
    output.solver = "fsesolve"

    if isinstance(e_ops, FunctionType):
        output.num_expect = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        output.num_expect = len(e_ops)
        expt_callback = False

        if output.num_expect == 0:
            output.states = []
        else:
            output.expect = []
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(len(tlist)))
                else:
                    output.expect.append(np.zeros(len(tlist), dtype=complex))

    else:
        raise TypeError("e_ops must be a list Qobj or a callback function")

    psi0_fb = psi0.transform(f_modes_0)
    for t_idx, t in enumerate(tlist):
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        f_states_t = floquet_states(f_modes_t, f_energies, t)
        psi_t = psi0_fb.transform(f_states_t, True)

        if expt_callback:
            # use callback method
            e_ops(t, psi_t)
        else:
            # calculate all the expectation values, or output psi if
            # no expectation value operators where defined
            if output.num_expect == 0:
                output.states.append(Qobj(psi_t))
            else:
                for e_idx, e in enumerate(e_ops):
                    output.expect[e_idx][t_idx] = expect(e, psi_t)

    return output
コード例 #26
0
    def run(self, rho0, tlist, e_ops=None, ado_init=False, ado_return=False):
        """
        Solve for the time evolution of the system.

        Parameters
        ----------
        rho0 : Qobj or HierarchyADOsState or numpy.array
            Initial state (:obj:`~Qobj` density matrix) of the system
            if ``ado_init`` is ``False``.

            If ``ado_init`` is ``True``, then ``rho0`` should be an
            instance of :obj:`~HierarchyADOsState` or a numpy array
            giving the initial state of all ADOs. Usually
            the state of the ADOs would be determine from a previous call
            to ``.run(..., ado_return=True)``. For example,
            ``result = solver.run(..., ado_return=True)`` could be followed
            by ``solver.run(result.ado_states[-1], tlist, ado_init=True)``.

            If a numpy array is passed its shape must be
            ``(number_of_ados, n, n)`` where ``(n, n)`` is the system shape
            (i.e. shape of the system density matrix) and the ADOs must be
            in the same order as in ``.ados.labels``.

        tlist : list
            An ordered list of times at which to return the value of the state.

        e_ops : Qobj / callable / list / dict / None, optional
            A list or dictionary of operators as `Qobj` and/or callable
            functions (they can be mixed) or a single operator or callable
            function. For an operator ``op``, the result will be computed
            using ``(state * op).tr()`` and the state at each time ``t``. For
            callable functions, ``f``, the result is computed using
            ``f(t, ado_state)``. The values are stored in ``expect`` on
            (see the return section below).

        ado_init: bool, default False
            Indicates if initial condition is just the system state, or a
            numpy array including all ADOs.

        ado_return: bool, default True
            Whether to also return as output the full state of all ADOs.

        Returns
        -------
        :class:`qutip.solver.Result`
            The results of the simulation run, with the following attributes:

            * ``times``: the times ``t`` (i.e. the ``tlist``).

            * ``states``: the system state at each time ``t`` (only available
              if ``e_ops`` was ``None`` or if the solver option
              ``store_states`` was set to ``True``).

            * ``ado_states``: the full ADO state at each time (only available
              if ``ado_return`` was set to ``True``). Each element is an
              instance of :class:`HierarchyADOsState`.            .
              The state of a particular ADO may be extracted from
              ``result.ado_states[i]`` by calling :meth:`.extract`.

            * ``expect``: the value of each ``e_ops`` at time ``t`` (only
              available if ``e_ops`` were given). If ``e_ops`` was passed
              as a dictionary, then ``expect`` will be a dictionary with
              the same keys as ``e_ops`` and values giving the list of
              outcomes for the corresponding key.
        """
        e_ops, expected = self._convert_e_ops(e_ops)
        e_ops_callables = any(not isinstance(op, Qobj)
                              for op in e_ops.values())

        n = self._sys_shape
        rho_shape = (n, n)
        rho_dims = self._sys_dims
        hierarchy_shape = (self._n_ados, n, n)

        output = Result()
        output.solver = "HEOMSolver"
        output.times = tlist
        if e_ops:
            output.expect = expected
        if not e_ops or self.options.store_states:
            output.states = []

        if ado_init:
            if isinstance(rho0, HierarchyADOsState):
                rho0_he = rho0._ado_state
            else:
                rho0_he = rho0
            if rho0_he.shape != hierarchy_shape:
                raise ValueError(
                    f"ADOs passed with ado_init have shape {rho0_he.shape}"
                    f"but the solver hierarchy shape is {hierarchy_shape}")
            rho0_he = rho0_he.reshape(n**2 * self._n_ados)
        else:
            rho0_he = np.zeros([n**2 * self._n_ados], dtype=complex)
            rho0_he[:n**2] = rho0.full().ravel('F')

        if ado_return:
            output.ado_states = []

        solver = self._ode
        solver.set_initial_value(rho0_he, tlist[0])

        self.progress_bar.start(len(tlist))
        for t_idx, t in enumerate(tlist):
            self.progress_bar.update(t_idx)
            if t_idx != 0:
                solver.integrate(t)
                if not solver.successful():
                    raise RuntimeError(
                        "HEOMSolver ODE integration error. Try increasing"
                        " the nsteps given in the HEOMSolver options"
                        " (which increases the allowed substeps in each"
                        " step between times given in tlist).")

            rho = Qobj(
                solver.y[:n**2].reshape(rho_shape, order='F'),
                dims=rho_dims,
            )
            if self.options.store_states:
                output.states.append(rho)
            if ado_return or e_ops_callables:
                ado_state = HierarchyADOsState(
                    rho, self.ados, solver.y.reshape(hierarchy_shape))
            if ado_return:
                output.ado_states.append(ado_state)
            for e_key, e_op in e_ops.items():
                if isinstance(e_op, Qobj):
                    e_result = (rho * e_op).tr()
                else:
                    e_result = e_op(t, ado_state)
                output.expect[e_key].append(e_result)

        self.progress_bar.finished()
        return output
コード例 #27
0
ファイル: bloch_redfield.py プロジェクト: avandeursen/qutip
def _td_brmesolve(H,
                  psi0,
                  tlist,
                  a_ops=[],
                  e_ops=[],
                  c_ops=[],
                  use_secular=True,
                  tol=qset.atol,
                  options=None,
                  progress_bar=None,
                  _safe_mode=True):

    if isket(psi0):
        rho0 = ket2dm(psi0)
    else:
        rho0 = psi0
    nrows = rho0.shape[0]

    H_terms = []
    H_td_terms = []
    H_obj = []
    A_terms = []
    A_td_terms = []
    C_terms = []
    C_td_terms = []
    C_obj = []
    spline_count = [0, 0]

    if isinstance(H, Qobj):
        H_terms.append(H.full('f'))
        H_td_terms.append('1')
    else:
        for kk, h in enumerate(H):
            if isinstance(h, Qobj):
                H_terms.append(h.full('f'))
                H_td_terms.append('1')
            elif isinstance(h, list):
                H_terms.append(h[0].full('f'))
                if isinstance(h[1], Cubic_Spline):
                    H_obj.append(h[1].coeffs)
                    spline_count[0] += 1
                H_td_terms.append(h[1])
            else:
                raise Exception('Invalid Hamiltonian specifiction.')

    for kk, c in enumerate(c_ops):
        if isinstance(c, Qobj):
            C_terms.append(c.full('f'))
            C_td_terms.append('1')
        elif isinstance(c, list):
            C_terms.append(c[0].full('f'))
            if isinstance(c[1], Cubic_Spline):
                C_obj.append(c[1].coeffs)
                spline_count[0] += 1
            C_td_terms.append(c[1])
        else:
            raise Exception('Invalid collape operator specifiction.')

    for kk, a in enumerate(a_ops):
        if isinstance(a, list):
            A_terms.append(a[0].full('f'))
            A_td_terms.append(a[1])
            if isinstance(a[1], tuple):
                if not len(a[1]) == 2:
                    raise Exception('Tuple must be len=2.')
                if isinstance(a[1][0], Cubic_Spline):
                    spline_count[1] += 1
                if isinstance(a[1][1], Cubic_Spline):
                    spline_count[1] += 1
        else:
            raise Exception('Invalid bath-coupling specifiction.')

    string_list = []
    for kk, _ in enumerate(H_td_terms):
        string_list.append("H_terms[{0}]".format(kk))
    for kk, _ in enumerate(H_obj):
        string_list.append("H_obj[{0}]".format(kk))
    for kk, _ in enumerate(C_td_terms):
        string_list.append("C_terms[{0}]".format(kk))
    for kk, _ in enumerate(C_obj):
        string_list.append("C_obj[{0}]".format(kk))
    for kk, _ in enumerate(A_td_terms):
        string_list.append("A_terms[{0}]".format(kk))
    #Add nrows to parameters
    string_list.append('nrows')
    parameter_string = ",".join(string_list)

    #
    # generate and compile new cython code if necessary
    #
    if not options.rhs_reuse or config.tdfunc is None:
        if options.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        cgen = BR_Codegen(
            h_terms=len(H_terms),
            h_td_terms=H_td_terms,
            h_obj=H_obj,
            c_terms=len(C_terms),
            c_td_terms=C_td_terms,
            c_obj=C_obj,
            a_terms=len(A_terms),
            a_td_terms=A_td_terms,
            spline_count=spline_count,
            config=config,
            sparse=False,
            use_secular=use_secular,
            use_openmp=options.use_openmp,
            omp_thresh=qset.openmp_thresh if qset.has_openmp else None,
            omp_threads=options.num_cpus,
            atol=tol)

        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs

    initial_vector = mat2vec(rho0.full()).ravel()

    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')', '<string>',
                   'exec')
    _ode.set_integrator('zvode',
                        method=options.method,
                        order=options.order,
                        atol=options.atol,
                        rtol=options.rtol,
                        nsteps=options.nsteps,
                        first_step=options.first_step,
                        min_step=options.min_step,
                        max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0],
                                                rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0],
                                            rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
コード例 #28
0
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        oper_evo = True
        oper_n = dims[0][0]
        norm_dim_factor = np.sqrt(oper_n)
    else:
        oper_evo = False
        norm_dim_factor = 1.0

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    def get_curr_state_data():
        if oper_evo:
            return vec2mat(r.y)
        else:
            return r.y

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        # get the current state / oper data if needed
        cdata = None
        if opt.store_states or opt.normalize_output or n_expt_op > 0:
            cdata = get_curr_state_data()

        if opt.normalize_output:
            # cdata *= _get_norm_factor(cdata, oper_evo)
            cdata *= norm_dim_factor / la_norm(cdata)
            if oper_evo:
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                r.set_initial_value(cdata, r.t)

        if opt.store_states:
            output.states.append(Qobj(cdata, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(cdata, dims=dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    cdata, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        cdata = get_curr_state_data()
        if opt.normalize_output:
            cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output
コード例 #29
0
ファイル: transfertensor.py プロジェクト: PhilipVinc/qutip
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    rho0vec = operator_to_vector(rho0)

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
コード例 #30
0
ファイル: mcsolve.py プロジェクト: mil52603/qutip
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output
コード例 #31
0
def _ssepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See ssepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "sepdpsolve"
    data.times = sso.tlist
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = sso.H
    for c in sso.c_ops:
        Heff += -0.5j * c.dag() * c

    progress_bar.start(sso.ntraj)
    for n in range(sso.ntraj):
        progress_bar.update(n)
        psi_t = sso.state0.full().ravel()

        states_list, jump_times, jump_op_idx = \
            _ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
                                           N_store, N_substeps,
                                           psi_t, sso.state0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [
            sum([data.states[m][n] for m in range(nt)]).unit()
            for n in range(len(data.times))
        ]

    # average
    data.expect = data.expect / nt

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect**2)) / (nt * (nt - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [
        np.real(data.expect[n, :]) if e.isherm else data.expect[n, :]
        for n, e in enumerate(sso.e_ops)
    ]

    return data
コード例 #32
0
ファイル: mesolve.py プロジェクト: wa4557/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
コード例 #33
0
ファイル: heom.py プロジェクト: MichalKononenko/qutip
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        start_run = timeit.default_timer()

        sup_dim = self._sup_dim
        stats = self.stats
        r = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")
        if stats:
            ss_conf = stats.sections.get('config')
            if ss_conf is None:
                raise RuntimeError("No config section for solver stats")
            ss_run = stats.sections.get('run')
            if ss_run is None:
                ss_run = stats.add_section('run')

        # Set up terms of the matsubara and tanimura boundaries
        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        if stats: start_init = timeit.default_timer()
        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes
        rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        r.set_initial_value(rho0_he, tlist[0])

        if stats:
            stats.add_timing('initialize',
                             timeit.default_timer() - start_init, ss_run)
            start_integ = timeit.default_timer()

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
                output.states.append(rho)

        if stats:
            time_now = timeit.default_timer()
            stats.add_timing('integrate',
                             time_now - start_integ, ss_run)
            if ss_run.total_time is None:
                ss_run.total_time = time_now - start_run
            else:
                ss_run.total_time += time_now - start_run
            stats.total_time = ss_conf.total_time + ss_run.total_time

        return output
コード例 #34
0
ファイル: floquet.py プロジェクト: Marata459/qutip
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None,
                           options=None, floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho.data = vec2mat(r.y)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output
コード例 #35
0
ファイル: floquet.py プロジェクト: christian512/qutip
def floquet_markov_mesolve(
    R,
    rho0,
    tlist,
    e_ops,
    options=None,
    floquet_basis=True,
    f_modes_0=None,
    f_modes_table_t=None,
    f_energies=None,
    T=None,
):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.

    .. note::

        It is important to understand in which frame and basis the results
        are returned here.

    Parameters
    ----------

    R : array
        The Floquet-Markov master equation tensor `R`.

    rho0 : :class:`qutip.qobj`
        Initial density matrix.  If ``f_modes_0`` is not passed, this density
        matrix is assumed to be in the Floquet picture.

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values.

    options : :class:`qutip.solver.Options`
        options for the ODE solver.

    floquet_basis: bool, True
        If ``True``, states and expectation values will be returned in the
        Floquet basis.  If ``False``, a transformation will be made to the
        computational basis; this will be in the lab frame if
        ``f_modes_table``, ``T` and ``f_energies`` are all supplied, or the
        interaction picture (defined purely be f_modes_0) if they are not.

    f_modes_0 : list of :class:`qutip.qobj` (kets), optional
        A list of initial Floquet modes, used to transform the given starting
        density matrix into the Floquet basis.  If this is not passed, it is
        assumed that ``rho`` is already in the Floquet basis.

    f_modes_table_t : nested list of :class:`qutip.qobj` (kets), optional
        A lookup-table of Floquet modes at times precalculated by
        :func:`qutip.floquet.floquet_modes_table`.  Necessary if
        ``floquet_basis`` is ``False`` and the transformation should be made
        back to the lab frame.

    f_energies : array_like of float, optional
        The precalculated Floquet quasienergies.  Necessary if
        ``floquet_basis`` is ``False`` and the transformation should be made
        back to the lab frame.

    T : float, optional
        The time period of driving.  Necessary if ``floquet_basis`` is
        ``False`` and the transformation should be made back to the lab frame.

    Returns
    -------

    output : :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """
    opt = options or Options()
    if opt.tidy:
        R.tidyup()
    rho0 = rho0.proj() if rho0.isket else rho0

    # Prepare output object.
    dt = tlist[1] - tlist[0]
    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist
    if isinstance(e_ops, FunctionType):
        expt_callback = True
        store_states = opt.store_states or False
    else:
        expt_callback = False
        try:
            e_ops = list(e_ops)
        except TypeError:
            raise TypeError("`e_ops` must be iterable or a function") from None
        n_expt_op = len(e_ops)
        if n_expt_op == 0:
            store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                dtype = np.float64 if op.isherm else np.complex128
                output.expect.append(np.zeros(len(tlist), dtype=dtype))
        store_states = opt.store_states or (n_expt_op == 0)
    if store_states:
        output.states = []

    # Choose which frame transformations should be done on the initial and
    # evolved states.
    lab_lookup = [f_modes_table_t, f_energies, T]
    if (any(x is None for x in lab_lookup)
            and not all(x is None for x in lab_lookup)):
        warnings.warn(
            "if transformation back to the computational basis in the lab"
            "frame is desired, all of `f_modes_t`, `f_energies` and `T` must"
            "be supplied.")
        f_modes_table_t = f_energies = T = None

    # Initial state.
    if f_modes_0 is not None:
        rho0 = rho0.transform(f_modes_0)

    # Evolved states.
    if floquet_basis:

        def transform(rho, t):
            return rho
    elif f_modes_table_t is not None:
        # Lab frame, computational basis.
        def transform(rho, t):
            f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
            f_states_t = floquet_states(f_modes_t, f_energies, t)
            return rho.transform(f_states_t, True)
    elif f_modes_0 is not None:
        # Interaction picture, computational basis.
        def transform(rho, t):
            return rho.transform(f_modes_0, False)
    else:
        raise ValueError(
            "cannot transform out of the Floquet basis without some knowledge "
            "of the Floquet modes.  Pass `f_modes_0`, or all of `f_modes_t`, "
            "`f_energies` and `T`.")

    # Setup integrator.
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    # Main evolution loop.
    for t_idx, t in enumerate(tlist):
        if not r.successful():
            break
        rho = transform(Qobj(vec2mat(r.y), rho0.dims, rho0.shape), t)
        if expt_callback:
            e_ops(t, rho)
        else:
            for m, e_op in enumerate(e_ops):
                output.expect[m][t_idx] = expect(e_op, rho)
        if store_states:
            output.states.append(rho)
        r.integrate(r.t + dt)
    return output
コード例 #36
0
ファイル: bloch_redfield.py プロジェクト: avandeursen/qutip
def brmesolve(H,
              psi0,
              tlist,
              a_ops=[],
              e_ops=[],
              c_ops=[],
              args={},
              use_secular=True,
              tol=qset.atol,
              spectra_cb=None,
              options=None,
              progress_bar=None,
              _safe_mode=True):
    """
    Solves for the dynamics of a system using the Bloch-Redfield master equation,
    given an input Hamiltonian, Hermitian bath-coupling terms and their associated 
    spectrum functions, as well as possible Lindblad collapse operators.
              
    For time-independent systems, the Hamiltonian must be given as a Qobj,
    whereas the bath-coupling terms (a_ops), must be written as a nested list
    of operator - spectrum function pairs, where the frequency is specified by
    the `w` variable.
              
    *Example*

        a_ops = [[a+a.dag(),lambda w: 0.2*(w>=0)]] 
              
    For time-dependent systems, the Hamiltonian, a_ops, and Lindblad collapse
    operators (c_ops), can be specified in the QuTiP string-based time-dependent
    format.  For the a_op spectra, the frequency variable must be `w`, and the 
    string cannot contain any other variables other than the possibility of having
    a time-dependence through the time variable `t`:
              
              
    *Example*

        a_ops = [[a+a.dag(), '0.2*exp(-t)*(w>=0)']]

    
    Parameters
    ----------
    H : Qobj / list
        System Hamiltonian given as a Qobj or
        nested list in string-based format.

    psi0: Qobj
        Initial density matrix or state vector (ket).

    tlist : array_like
        List of times for evaluating evolution

    a_ops : list
        Nested list of Hermitian system operators that couple to 
        the bath degrees of freedom, along with their associated
        spectra.

    e_ops : list
        List of operators for which to evaluate expectation values.

    c_ops : list
        List of system collapse operators, or nested list in
        string-based format.

    args : dict (not implimented)
        Placeholder for future implementation, kept for API consistency.

    use_secular : bool {True}
        Use secular approximation when evaluating bath-coupling terms.
    
    tol : float {qutip.setttings.atol}
        Tolerance used for removing small values after 
        basis transformation.
              
    spectra_cb : list
        DEPRECIATED. Do not use.
    
    options : :class:`qutip.solver.Options`
        Options for the solver.
              
    progress_bar : BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation.

    Returns
    -------
    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """
    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    if not (spectra_cb is None):
        warnings.warn("The use of spectra_cb is depreciated.",
                      DeprecationWarning)
        _a_ops = []
        for kk, a in enumerate(a_ops):
            _a_ops.append([a, spectra_cb[kk]])
        a_ops = _a_ops

    if _safe_mode:
        _solver_safety_check(H, psi0, a_ops + c_ops, e_ops, args)

    # check for type (if any) of time-dependent inputs
    _, n_func, n_str = _td_format_check(H, a_ops + c_ops)

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()

    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.reset()

    #check if should use OPENMP
    check_use_openmp(options)

    if n_str == 0:

        R, ekets = bloch_redfield_tensor(H,
                                         a_ops,
                                         spectra_cb=None,
                                         c_ops=c_ops)

        output = Result()
        output.solver = "brmesolve"
        output.times = tlist

        results = bloch_redfield_solve(R,
                                       ekets,
                                       psi0,
                                       tlist,
                                       e_ops,
                                       options,
                                       progress_bar=progress_bar)

        if e_ops:
            output.expect = results
        else:
            output.states = results

        return output

    elif n_str != 0 and n_func == 0:
        output = _td_brmesolve(H,
                               psi0,
                               tlist,
                               a_ops=a_ops,
                               e_ops=e_ops,
                               c_ops=c_ops,
                               use_secular=use_secular,
                               tol=tol,
                               options=options,
                               progress_bar=progress_bar,
                               _safe_mode=_safe_mode)

        return output

    else:
        raise Exception('Cannot mix func and str formats.')
コード例 #37
0
ファイル: sesolve.py プロジェクト: ramanujasimha/qutip
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """
    if opt.normalize_output:
        state_norm_func = norm
    else:
        state_norm_func = None

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data, r.y,
                                                    e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y, dims=dims)

    return output
コード例 #38
0
ファイル: mcsolve_f90.py プロジェクト: Marata459/qutip
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None,
                options=Options(), sparse_dms=True, serial=False,
                ptrace_sel=[], calc_entropy=False):
    """
    Monte-Carlo wave function solver with fortran 90 backend.
    Usage is identical to qutip.mcsolve, for problems without explicit
    time-dependence, and with some optional input:

    Parameters
    ----------
    H : qobj
        System Hamiltonian.
    psi0 : qobj
        Initial state vector
    tlist : array_like
        Times at which results are recorded.
    ntraj : int
        Number of trajectories to run.
    c_ops : array_like
        ``list`` or ``array`` of collapse operators.
    e_ops : array_like
        ``list`` or ``array`` of operators for calculating expectation values.
    options : Options
        Instance of solver options.
    sparse_dms : boolean
        If averaged density matrices are returned, they will be stored as
        sparse (Compressed Row Format) matrices during computation if
        sparse_dms = True (default), and dense matrices otherwise. Dense
        matrices might be preferable for smaller systems.
    serial : boolean
        If True (default is False) the solver will not make use of the
        multiprocessing module, and simply run in serial.
    ptrace_sel: list
        This optional argument specifies a list of components to keep when
        returning a partially traced density matrix. This can be convenient for
        large systems where memory becomes a problem, but you are only
        interested in parts of the density matrix.
    calc_entropy : boolean
        If ptrace_sel is specified, calc_entropy=True will have the solver
        return the averaged entropy over trajectories in results.entropy. This
        can be interpreted as a measure of entanglement. See Phys. Rev. Lett.
        93, 120408 (2004), Phys. Rev. A 86, 022310 (2012).

    Returns
    -------
    results : Result
        Object storing all results from simulation.

    """
    if ntraj is None:
        ntraj = options.ntraj

    if psi0.type != 'ket':
        raise Exception("Initial state must be a state vector.")
    config.options = options
    # set num_cpus to the value given in qutip.settings
    # if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full()
    else:
        config.psi0 = psi0.full()
    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape
    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        raise Exception("ntraj as list argument is not supported.")
    else:
        config.ntraj = ntraj
        # ntraj_list = [ntraj]
    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    if not options.rhs_reuse:
        config.soft_reset()
        # no time dependence
        config.tflag = 0
        # check for collapse operators
        if len(c_ops) > 0:
            config.cflag = 1
        else:
            config.cflag = 0
        # Configure data
        _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config)

    # Load Monte Carlo class
    mc = _MC_class()
    # Set solver type
    if (options.method == 'adams'):
        mc.mf = 10
    elif (options.method == 'bdf'):
        mc.mf = 22
    else:
        if debug:
            print('Unrecognized method for ode solver, using "adams".')
        mc.mf = 10
    # store ket and density matrix dims and shape for convenience
    mc.psi0_dims = psi0.dims
    mc.psi0_shape = psi0.shape
    mc.dm_dims = (psi0 * psi0.dag()).dims
    mc.dm_shape = (psi0 * psi0.dag()).shape
    # use sparse density matrices during computation?
    mc.sparse_dms = sparse_dms
    # run in serial?
    mc.serial_run = serial or (ntraj == 1)
    # are we doing a partial trace for returned states?
    mc.ptrace_sel = ptrace_sel
    if (ptrace_sel != []):
        if debug:
            print("ptrace_sel set to " + str(ptrace_sel))
            print("We are using dense density matrices during computation " +
                  "when performing partial trace. Setting sparse_dms = False")
            print("This feature is experimental.")
        mc.sparse_dms = False
        mc.dm_dims = psi0.ptrace(ptrace_sel).dims
        mc.dm_shape = psi0.ptrace(ptrace_sel).shape
    if (calc_entropy):
        if (ptrace_sel == []):
            if debug:
                print("calc_entropy = True, but ptrace_sel = []. Please set " +
                      "a list of components to keep when calculating average" +
                      " entropy of reduced density matrix in ptrace_sel. " +
                      "Setting calc_entropy = False.")
            calc_entropy = False
        mc.calc_entropy = calc_entropy

    # construct output Result object
    output = Result()

    # Run
    mc.run()
    output.states = mc.sol.states
    output.expect = mc.sol.expect
    output.col_times = mc.sol.col_times
    output.col_which = mc.sol.col_which
    if (hasattr(mc.sol, 'entropy')):
        output.entropy = mc.sol.entropy

    output.solver = 'Fortran 90 Monte Carlo solver'
    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj

    return output
コード例 #39
0
ファイル: heom.py プロジェクト: zhaouvorg/qutip
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        start_run = timeit.default_timer()

        sup_dim = self._sup_dim
        stats = self.stats
        r = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")
        if stats:
            ss_conf = stats.sections.get('config')
            if ss_conf is None:
                raise RuntimeError("No config section for solver stats")
            ss_run = stats.sections.get('run')
            if ss_run is None:
                ss_run = stats.add_section('run')

        # Set up terms of the matsubara and tanimura boundaries
        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        if stats: start_init = timeit.default_timer()
        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F')  # Using 'F' effectively transposes
        rho0_he = np.zeros([sup_dim * self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        r.set_initial_value(rho0_he, tlist[0])

        if stats:
            stats.add_timing('initialize',
                             timeit.default_timer() - start_init, ss_run)
            start_integ = timeit.default_timer()

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
                output.states.append(rho)

        if stats:
            time_now = timeit.default_timer()
            stats.add_timing('integrate', time_now - start_integ, ss_run)
            if ss_run.total_time is None:
                ss_run.total_time = time_now - start_run
            else:
                ss_run.total_time += time_now - start_run
            stats.total_time = ss_conf.total_time + ss_run.total_time

        return output
コード例 #40
0
ファイル: floquet.py プロジェクト: vamsi1905/qutip
def floquet_markov_mesolve(R,
                           ekets,
                           rho0,
                           tlist,
                           e_ops,
                           f_modes_table=None,
                           options=None,
                           floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho = Qobj(vec2mat(r.y), rho0.dims, rho0.shape)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output
コード例 #41
0
    def propagate(self, tlist, *, propagator, rho0=None, e_ops=None):
        """Propagates the system of the objective over the entire time grid

        Solve the dynamics for the `H` and `c_ops` of the objective. If `rho0`
        is not given, the `initial_state` will be propagated. This is similar
        to the :meth:`mesolve` method, but instead of using
        :func:`qutip.mesolve.mesolve`, the `propagate` function is used to go
        between points on the time grid. This function is the same as what is
        passed to :func:`.optimize_pulses`. The crucial difference between this
        and :meth:`mesolve` is in the time discretization convention. While
        :meth:`mesolve` uses piecewise-constant controls centered around the
        values in `tlist` (the control field switches in the middle between two
        points in `tlist`), :meth:`propagate` uses piecewise-constant controls
        on the intervals of `tlist` (the control field switches on the points
        in `tlist`)

        Comparing the result of :meth:`mesolve` and :meth:`propagate` allows to
        estimate the "time discretization error". If the error is significant,
        a shorter time step shoud be used.

        Returns:
            qutip.solver.Result: Result of the propagation, using the same
            structure as :meth:`mesolve`.
        """
        if e_ops is None:
            e_ops = []
        result = QutipSolverResult()
        result.solver = propagator.__name__
        result.times = copy.copy(tlist)
        result.states = []
        result.expect = []
        result.num_expect = len(e_ops)
        result.num_collapse = len(self.c_ops)
        for _ in e_ops:
            result.expect.append([])
        state = rho0
        if state is None:
            state = self.initial_state
        if len(e_ops) == 0:
            result.states.append(state)
        else:
            for (i, oper) in enumerate(e_ops):
                result.expect[i].append(qutip.expect(oper, state))
        controls = extract_controls([self])
        pulses_mapping = extract_controls_mapping([self], controls)
        mapping = pulses_mapping[0]  # "first objective" (dummy structure)
        pulses = [  # defined on the tlist intervals
            control_onto_interval(discretize(control, tlist))
            for control in controls
        ]
        for time_index in range(len(tlist) - 1):  # index over intervals
            H = plug_in_pulse_values(self.H, pulses, mapping[0], time_index)
            c_ops = [
                plug_in_pulse_values(c_op, pulses, mapping[ic + 1], time_index)
                for (ic, c_op) in enumerate(self.c_ops)
            ]
            dt = tlist[time_index + 1] - tlist[time_index]
            state = propagator(H, state, dt, c_ops)
            if len(e_ops) == 0:
                result.states.append(state)
            else:
                for (i, oper) in enumerate(e_ops):
                    result.expect[i].append(qutip.expect(oper, state))
        return result
コード例 #42
0
def brmesolve(H,
              psi0,
              tlist,
              a_ops,
              e_ops=[],
              spectra_cb=[],
              c_ops=[],
              args={},
              options=Options()):
    """
    Solve the dynamics for a system using the Bloch-Redfield master equation.

    .. note::

        This solver does not currently support time-dependent Hamiltonians.

    Parameters
    ----------

    H : :class:`qutip.Qobj`
        System Hamiltonian.

    rho0 / psi0: :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    tlist : *list* / *array*
        List of times for :math:`t`.

    a_ops : list of :class:`qutip.qobj`
        List of system operators that couple to bath degrees of freedom.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    c_ops : list of :class:`qutip.qobj`
        List of system collapse operators.

    args : *dictionary*
        Placeholder for future implementation, kept for API consistency.

    options : :class:`qutip.solver.Options`
        Options for the solver.

    Returns
    -------

    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """

    if not spectra_cb:
        # default to infinite temperature white noise
        spectra_cb = [lambda w: 1.0 for _ in a_ops]

    R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)

    if e_ops:
        output.expect = results
    else:
        output.states = results

    return output
コード例 #43
0
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(
                    e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output