def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000)
def __init__(self, capacity: int = 10000, storage_unit: str = "timesteps", alpha: float = 1.0, **kwargs): """Initializes a PrioritizedReplayBuffer instance. Args: capacity: Max number of timesteps to store in the FIFO buffer. After reaching this number, older samples will be dropped to make space for new ones. storage_unit: Either 'timesteps', 'sequences' or 'episodes'. Specifies how experiences are stored. alpha: How much prioritization is used (0.0=no prioritization, 1.0=full prioritization). **kwargs: Forward compatibility kwargs. """ ReplayBuffer.__init__(self, capacity, storage_unit, **kwargs) assert alpha > 0 self._alpha = alpha # Segment tree must have capacity that is a power of 2 it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000)
def __init__(self, capacity: int = 10000, alpha: float = 1.0, size: Optional[int] = DEPRECATED_VALUE): """Initializes a PrioritizedReplayBuffer instance. Args: capacity (int): Max number of timesteps to store in the FIFO buffer. After reaching this number, older samples will be dropped to make space for new ones. alpha (float): How much prioritization is used (0.0=no prioritization, 1.0=full prioritization). """ super(PrioritizedReplayBuffer, self).__init__(capacity, size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000)
def __init__(self, size: int, alpha: float): """Create Prioritized Replay buffer. Args: size (int): Max number of items to store in the FIFO buffer. alpha (float): how much prioritization is used (0 - no prioritization, 1 - full prioritization). See also: ReplayBuffer.__init__() """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000)
class PrioritizedReplayBuffer(ReplayBuffer): @DeveloperAPI def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) @DeveloperAPI def add(self, obs_t, action, reward, obs_tp1, done, weight): """See ReplayBuffer.store_effect""" idx = self._next_idx super(PrioritizedReplayBuffer, self).add(obs_t, action, reward, obs_tp1, done, weight) if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @DeveloperAPI def sample_idxes(self, batch_size): return self._sample_proportional(batch_size) @DeveloperAPI def sample_with_idxes(self, idxes, beta): assert beta > 0 self._num_sampled += len(idxes) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) @DeveloperAPI def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta >= 0.0 self._num_sampled += batch_size idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) @DeveloperAPI def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @DeveloperAPI def stats(self, debug=False): parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent
class PrioritizedReplayBuffer(ReplayBuffer): @DeveloperAPI def __init__(self, size: int, alpha: float): """Create Prioritized Replay buffer. Args: size (int): Max number of items to store in the FIFO buffer. alpha (float): how much prioritization is used (0 - no prioritization, 1 - full prioritization). See also: ReplayBuffer.__init__() """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) @DeveloperAPI def add(self, item: SampleBatchType, weight: float): idx = self._next_idx super(PrioritizedReplayBuffer, self).add(item, weight) if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha def _sample_proportional(self, num_items: int): res = [] for _ in range(num_items): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @DeveloperAPI def sample(self, num_items: int, beta: float) -> SampleBatchType: """Sample a batch of experiences and return priority weights, indices. Args: num_items (int): Number of items to sample from this buffer. beta (float): To what degree to use importance weights (0 - no corrections, 1 - full correction). Returns: SampleBatchType: Concatenated batch of items including "weights" and "batch_indexes" fields denoting IS of each sampled transition and original idxes in buffer of sampled experiences. """ assert beta >= 0.0 self._num_sampled += num_items idxes = self._sample_proportional(num_items) weights = [] batch_indexes = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) count = self._storage[idx].count weights.extend([weight / max_weight] * count) batch_indexes.extend([idx] * count) batch = self._encode_sample(idxes) # Note: prioritization is not supported in lockstep replay mode. if isinstance(batch, SampleBatch): assert len(weights) == batch.count assert len(batch_indexes) == batch.count batch["weights"] = np.array(weights) batch["batch_indexes"] = np.array(batch_indexes) return batch @DeveloperAPI def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @DeveloperAPI def stats(self, debug=False): parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent
class PrioritizedReplayBuffer(ReplayBuffer): """This buffer implements Prioritized Experience Replay The algorithm has been described by Tom Schaul et. al. in "Prioritized Experience Replay". See https://arxiv.org/pdf/1511.05952.pdf for the full paper. """ @ExperimentalAPI def __init__(self, capacity: int = 10000, storage_unit: str = "timesteps", alpha: float = 1.0, **kwargs): """Initializes a PrioritizedReplayBuffer instance. Args: capacity: Max number of timesteps to store in the FIFO buffer. After reaching this number, older samples will be dropped to make space for new ones. storage_unit: Either 'timesteps', 'sequences' or 'episodes'. Specifies how experiences are stored. alpha: How much prioritization is used (0.0=no prioritization, 1.0=full prioritization). **kwargs: Forward compatibility kwargs. """ ReplayBuffer.__init__(self, capacity, storage_unit, **kwargs) assert alpha > 0 self._alpha = alpha # Segment tree must have capacity that is a power of 2 it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) @ExperimentalAPI @override(ReplayBuffer) def _add_single_batch(self, item: SampleBatchType, **kwargs) -> None: """Add a batch of experiences to self._storage with weight. An item consists of either one or more timesteps, a sequence or an episode. Differs from add() in that it does not consider the storage unit or type of batch and simply stores it. Args: item: The item to be added. **kwargs: Forward compatibility kwargs. """ weight = kwargs.get("weight", None) if weight is None: weight = self._max_priority self._it_sum[self._next_idx] = weight**self._alpha self._it_min[self._next_idx] = weight**self._alpha ReplayBuffer._add_single_batch(self, item) def _sample_proportional(self, num_items: int) -> List[int]: res = [] for _ in range(num_items): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @ExperimentalAPI @override(ReplayBuffer) def sample(self, num_items: int, beta: float, **kwargs) -> Optional[SampleBatchType]: """Sample `num_items` items from this buffer, including prio. weights. Samples in the results may be repeated. Examples for storage of SamplesBatches: - If storage unit `timesteps` has been chosen and batches of size 5 have been added, sample(5) will yield a concatenated batch of 15 timesteps. - If storage unit 'sequences' has been chosen and sequences of different lengths have been added, sample(5) will yield a concatenated batch with a number of timesteps equal to the sum of timesteps in the 5 sampled sequences. - If storage unit 'episodes' has been chosen and episodes of different lengths have been added, sample(5) will yield a concatenated batch with a number of timesteps equal to the sum of timesteps in the 5 sampled episodes. Args: num_items: Number of items to sample from this buffer. beta: To what degree to use importance weights (0 - no corrections, 1 - full correction). **kwargs: Forward compatibility kwargs. Returns: Concatenated SampleBatch of items including "weights" and "batch_indexes" fields denoting IS of each sampled transition and original idxes in buffer of sampled experiences. """ assert beta >= 0.0 idxes = self._sample_proportional(num_items) weights = [] batch_indexes = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self))**(-beta) count = self._storage[idx].count # If zero-padded, count will not be the actual batch size of the # data. if (isinstance(self._storage[idx], SampleBatch) and self._storage[idx].zero_padded): actual_size = self._storage[idx].max_seq_len else: actual_size = count weights.extend([weight / max_weight] * actual_size) batch_indexes.extend([idx] * actual_size) self._num_timesteps_sampled += count batch = self._encode_sample(idxes) # Note: prioritization is not supported in multi agent lockstep if isinstance(batch, SampleBatch): batch["weights"] = np.array(weights) batch["batch_indexes"] = np.array(batch_indexes) return batch @ExperimentalAPI def update_priorities(self, idxes: List[int], priorities: List[float]) -> None: """Update priorities of items at given indices. Sets priority of item at index idxes[i] in buffer to priorities[i]. Args: idxes: List of indices of items priorities: List of updated priorities corresponding to items at the idxes denoted by variable `idxes`. """ # Making sure we don't pass in e.g. a torch tensor. assert isinstance( idxes, (list, np.ndarray) ), "ERROR: `idxes` is not a list or np.ndarray, but " "{}!".format( type(idxes).__name__) assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @ExperimentalAPI @override(ReplayBuffer) def stats(self, debug: bool = False) -> Dict: """Returns the stats of this buffer. Args: debug: If true, adds sample eviction statistics to the returned stats dict. Returns: A dictionary of stats about this buffer. """ parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent @ExperimentalAPI @override(ReplayBuffer) def get_state(self) -> Dict[str, Any]: """Returns all local state. Returns: The serializable local state. """ # Get parent state. state = super().get_state() # Add prio weights. state.update({ "sum_segment_tree": self._it_sum.get_state(), "min_segment_tree": self._it_min.get_state(), "max_priority": self._max_priority, }) return state @ExperimentalAPI @override(ReplayBuffer) def set_state(self, state: Dict[str, Any]) -> None: """Restores all local state to the provided `state`. Args: state: The new state to set this buffer. Can be obtained by calling `self.get_state()`. """ super().set_state(state) self._it_sum.set_state(state["sum_segment_tree"]) self._it_min.set_state(state["min_segment_tree"]) self._max_priority = state["max_priority"]
def test_max_interval_tree(self): tree = MinSegmentTree(4) tree[0] = 1.0 tree[2] = 0.5 tree[3] = 3.0 assert np.isclose(tree.min(), 0.5) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.5) assert np.isclose(tree.min(0, -1), 0.5) assert np.isclose(tree.min(2, 4), 0.5) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 0.7 assert np.isclose(tree.min(), 0.7) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.7) assert np.isclose(tree.min(0, -1), 0.7) assert np.isclose(tree.min(2, 4), 0.7) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 4.0 assert np.isclose(tree.min(), 1.0) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 1.0) assert np.isclose(tree.min(0, -1), 1.0) assert np.isclose(tree.min(2, 4), 3.0) assert np.isclose(tree.min(2, 3), 4.0) assert np.isclose(tree.min(2, -1), 4.0) assert np.isclose(tree.min(3, 4), 3.0)
class PrioritizedReplayBuffer(ReplayBuffer): @ExperimentalAPI def __init__( self, capacity: int = 10000, storage_unit: str = "timesteps", alpha: float = 1.0, ): """Initializes a PrioritizedReplayBuffer instance. Args: capacity: Max number of timesteps to store in the FIFO buffer. After reaching this number, older samples will be dropped to make space for new ones. storage_unit: Either 'sequences' or 'timesteps'. Specifies how experiences are stored. alpha: How much prioritization is used (0.0=no prioritization, 1.0=full prioritization). """ ReplayBuffer.__init__(self, capacity, storage_unit) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) @ExperimentalAPI @override(ReplayBuffer) def add(self, batch: SampleBatchType, weight: float) -> None: """Add a batch of experiences. Args: batch: SampleBatch to add to this buffer's storage. weight: The weight of the added sample used in subsequent sampling steps. """ idx = self._next_idx assert batch.count > 0, batch warn_replay_capacity(item=batch, num_items=self.capacity / batch.count) # Update our timesteps counts. self._num_timesteps_added += batch.count self._num_timesteps_added_wrap += batch.count if self._next_idx >= len(self._storage): self._storage.append(batch) self._est_size_bytes += batch.size_bytes() else: self._storage[self._next_idx] = batch # Wrap around storage as a circular buffer once we hit capacity. if self._num_timesteps_added_wrap >= self.capacity: self._eviction_started = True self._num_timesteps_added_wrap = 0 self._next_idx = 0 else: self._next_idx += 1 # Eviction of older samples has already started (buffer is "full"). if self._eviction_started: self._evicted_hit_stats.push(self._hit_count[self._next_idx]) self._hit_count[self._next_idx] = 0 if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha def _sample_proportional(self, num_items: int) -> List[int]: res = [] for _ in range(num_items): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @ExperimentalAPI @override(ReplayBuffer) def sample(self, num_items: int, beta: float) -> Optional[SampleBatchType]: """Sample `num_items` items from this buffer, including prio. weights. If less than `num_items` records are in this buffer, some samples in the results may be repeated to fulfil the batch size (`num_items`) request. Args: num_items: Number of items to sample from this buffer. beta: To what degree to use importance weights (0 - no corrections, 1 - full correction). Returns: Concatenated batch of items including "weights" and "batch_indexes" fields denoting IS of each sampled transition and original idxes in buffer of sampled experiences. """ # If we don't have any samples yet in this buffer, return None. if len(self) == 0: return None assert beta >= 0.0 idxes = self._sample_proportional(num_items) weights = [] batch_indexes = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self))**(-beta) count = self._storage[idx].count # If zero-padded, count will not be the actual batch size of the # data. if (isinstance(self._storage[idx], SampleBatch) and self._storage[idx].zero_padded): actual_size = self._storage[idx].max_seq_len else: actual_size = count weights.extend([weight / max_weight] * actual_size) batch_indexes.extend([idx] * actual_size) self._num_timesteps_sampled += count batch = self._encode_sample(idxes) # Note: prioritization is not supported in lockstep replay mode. if isinstance(batch, SampleBatch): batch["weights"] = np.array(weights) batch["batch_indexes"] = np.array(batch_indexes) return batch @ExperimentalAPI def update_priorities(self, idxes: List[int], priorities: List[float]) -> None: """Update priorities of sampled transitions. Sets priority of transition at index idxes[i] in buffer to priorities[i]. Args: idxes: List of indices of sampled transitions priorities: List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ # Making sure we don't pass in e.g. a torch tensor. assert isinstance( idxes, (list, np.ndarray) ), "ERROR: `idxes` is not a list or np.ndarray, but " "{}!".format( type(idxes).__name__) assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @ExperimentalAPI @override(ReplayBuffer) def stats(self, debug: bool = False) -> Dict: """Returns the stats of this buffer. Args: debug: If true, adds sample eviction statistics to the returned stats dict. Returns: A dictionary of stats about this buffer. """ parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent @ExperimentalAPI @override(ReplayBuffer) def get_state(self) -> Dict[str, Any]: """Returns all local state. Returns: The serializable local state. """ # Get parent state. state = super().get_state() # Add prio weights. state.update({ "sum_segment_tree": self._it_sum.get_state(), "min_segment_tree": self._it_min.get_state(), "max_priority": self._max_priority, }) return state @ExperimentalAPI @override(ReplayBuffer) def set_state(self, state: Dict[str, Any]) -> None: """Restores all local state to the provided `state`. Args: state: The new state to set this buffer. Can be obtained by calling `self.get_state()`. """ super().set_state(state) self._it_sum.set_state(state["sum_segment_tree"]) self._it_min.set_state(state["min_segment_tree"]) self._max_priority = state["max_priority"]
class PrioritizedReplayBuffer(ReplayBuffer): @DeveloperAPI def __init__(self, capacity: int = 10000, alpha: float = 1.0, size: Optional[int] = DEPRECATED_VALUE): """Initializes a PrioritizedReplayBuffer instance. Args: capacity (int): Max number of timesteps to store in the FIFO buffer. After reaching this number, older samples will be dropped to make space for new ones. alpha (float): How much prioritization is used (0.0=no prioritization, 1.0=full prioritization). """ super(PrioritizedReplayBuffer, self).__init__(capacity, size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) @DeveloperAPI @override(ReplayBuffer) def add(self, item: SampleBatchType, weight: float) -> None: idx = self._next_idx super(PrioritizedReplayBuffer, self).add(item, weight) if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha def _sample_proportional(self, num_items: int) -> List[int]: res = [] for _ in range(num_items): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @DeveloperAPI @override(ReplayBuffer) def sample(self, num_items: int, beta: float) -> SampleBatchType: """Sample a batch of experiences and return priority weights, indices. Args: num_items (int): Number of items to sample from this buffer. beta (float): To what degree to use importance weights (0 - no corrections, 1 - full correction). Returns: SampleBatchType: Concatenated batch of items including "weights" and "batch_indexes" fields denoting IS of each sampled transition and original idxes in buffer of sampled experiences. """ assert beta >= 0.0 idxes = self._sample_proportional(num_items) weights = [] batch_indexes = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) count = self._storage[idx].count # If zero-padded, count will not be the actual batch size of the # data. if isinstance(self._storage[idx], SampleBatch) and \ self._storage[idx].zero_padded: actual_size = self._storage[idx].max_seq_len else: actual_size = count weights.extend([weight / max_weight] * actual_size) batch_indexes.extend([idx] * actual_size) self._num_timesteps_sampled += count batch = self._encode_sample(idxes) # Note: prioritization is not supported in lockstep replay mode. if isinstance(batch, SampleBatch): batch["weights"] = np.array(weights) batch["batch_indexes"] = np.array(batch_indexes) return batch @DeveloperAPI def update_priorities(self, idxes: List[int], priorities: List[float]) -> None: """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ # Making sure we don't pass in e.g. a torch tensor. assert isinstance(idxes, (list, np.ndarray)), \ "ERROR: `idxes` is not a list or np.ndarray, but " \ "{}!".format(type(idxes).__name__) assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @DeveloperAPI @override(ReplayBuffer) def stats(self, debug: bool = False) -> Dict: parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent @DeveloperAPI @override(ReplayBuffer) def get_state(self) -> Dict[str, Any]: """Returns all local state. Returns: Dict[str, Any]: The serializable local state. """ # Get parent state. state = super().get_state() # Add prio weights. state.update({ "sum_segment_tree": self._it_sum.get_state(), "min_segment_tree": self._it_min.get_state(), "max_priority": self._max_priority, }) return state @DeveloperAPI @override(ReplayBuffer) def set_state(self, state: Dict[str, Any]) -> None: """Restores all local state to the provided `state`. Args: state (Dict[str, Any]): The new state to set this buffer. Can be obtained by calling `self.get_state()`. """ super().set_state(state) self._it_sum.set_state(state["sum_segment_tree"]) self._it_min.set_state(state["min_segment_tree"]) self._max_priority = state["max_priority"]