def __init__(self, size, alpha):
        """Create Prioritized Replay buffer.

        Parameters
        ----------
        size: int
          Max number of transitions to store in the buffer. When the buffer
          overflows the old memories are dropped.
        alpha: float
          how much prioritization is used
          (0 - no prioritization, 1 - full prioritization)

        See Also
        --------
        ReplayBuffer.__init__
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)
    def __init__(self,
                 capacity: int = 10000,
                 storage_unit: str = "timesteps",
                 alpha: float = 1.0,
                 **kwargs):
        """Initializes a PrioritizedReplayBuffer instance.

        Args:
            capacity: Max number of timesteps to store in the FIFO
                buffer. After reaching this number, older samples will be
                dropped to make space for new ones.
            storage_unit: Either 'timesteps', 'sequences' or
                'episodes'. Specifies how experiences are stored.
            alpha: How much prioritization is used
                (0.0=no prioritization, 1.0=full prioritization).
            **kwargs: Forward compatibility kwargs.
        """
        ReplayBuffer.__init__(self, capacity, storage_unit, **kwargs)

        assert alpha > 0
        self._alpha = alpha

        # Segment tree must have capacity that is a power of 2
        it_capacity = 1
        while it_capacity < self.capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)
示例#3
0
    def __init__(self,
                 capacity: int = 10000,
                 alpha: float = 1.0,
                 size: Optional[int] = DEPRECATED_VALUE):
        """Initializes a PrioritizedReplayBuffer instance.

        Args:
            capacity (int): Max number of timesteps to store in the FIFO
                buffer. After reaching this number, older samples will be
                dropped to make space for new ones.
            alpha (float): How much prioritization is used
                (0.0=no prioritization, 1.0=full prioritization).
        """
        super(PrioritizedReplayBuffer, self).__init__(capacity, size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < self.capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)
示例#4
0
    def __init__(self, size: int, alpha: float):
        """Create Prioritized Replay buffer.

        Args:
            size (int): Max number of items to store in the FIFO buffer.
            alpha (float): how much prioritization is used
                (0 - no prioritization, 1 - full prioritization).

        See also:
            ReplayBuffer.__init__()
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)
class PrioritizedReplayBuffer(ReplayBuffer):
    @DeveloperAPI
    def __init__(self, size, alpha):
        """Create Prioritized Replay buffer.

        Parameters
        ----------
        size: int
          Max number of transitions to store in the buffer. When the buffer
          overflows the old memories are dropped.
        alpha: float
          how much prioritization is used
          (0 - no prioritization, 1 - full prioritization)

        See Also
        --------
        ReplayBuffer.__init__
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)

    @DeveloperAPI
    def add(self, obs_t, action, reward, obs_tp1, done, weight):
        """See ReplayBuffer.store_effect"""

        idx = self._next_idx
        super(PrioritizedReplayBuffer, self).add(obs_t, action, reward,
                                                 obs_tp1, done, weight)
        if weight is None:
            weight = self._max_priority
        self._it_sum[idx] = weight**self._alpha
        self._it_min[idx] = weight**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        for _ in range(batch_size):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage))
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    @DeveloperAPI
    def sample_idxes(self, batch_size):
        return self._sample_proportional(batch_size)

    @DeveloperAPI
    def sample_with_idxes(self, idxes, beta):
        assert beta > 0
        self._num_sampled += len(idxes)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    @DeveloperAPI
    def sample(self, batch_size, beta):
        """Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.


        Parameters
        ----------
        batch_size: int
          How many transitions to sample.
        beta: float
          To what degree to use importance weights
          (0 - no corrections, 1 - full correction)

        Returns
        -------
        obs_batch: np.array
          batch of observations
        act_batch: np.array
          batch of actions executed given obs_batch
        rew_batch: np.array
          rewards received as results of executing act_batch
        next_obs_batch: np.array
          next set of observations seen after executing act_batch
        done_mask: np.array
          done_mask[i] = 1 if executing act_batch[i] resulted in
          the end of an episode and 0 otherwise.
        weights: np.array
          Array of shape (batch_size,) and dtype np.float32
          denoting importance weight of each sampled transition
        idxes: np.array
          Array of shape (batch_size,) and dtype np.int32
          idexes in buffer of sampled experiences
        """
        assert beta >= 0.0
        self._num_sampled += batch_size

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    @DeveloperAPI
    def update_priorities(self, idxes, priorities):
        """Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        Parameters
        ----------
        idxes: [int]
          List of idxes of sampled transitions
        priorities: [float]
          List of updated priorities corresponding to
          transitions at the sampled idxes denoted by
          variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            delta = priority**self._alpha - self._it_sum[idx]
            self._prio_change_stats.push(delta)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)

    @DeveloperAPI
    def stats(self, debug=False):
        parent = ReplayBuffer.stats(self, debug)
        if debug:
            parent.update(self._prio_change_stats.stats())
        return parent
示例#6
0
class PrioritizedReplayBuffer(ReplayBuffer):
    @DeveloperAPI
    def __init__(self, size: int, alpha: float):
        """Create Prioritized Replay buffer.

        Args:
            size (int): Max number of items to store in the FIFO buffer.
            alpha (float): how much prioritization is used
                (0 - no prioritization, 1 - full prioritization).

        See also:
            ReplayBuffer.__init__()
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)

    @DeveloperAPI
    def add(self, item: SampleBatchType, weight: float):
        idx = self._next_idx
        super(PrioritizedReplayBuffer, self).add(item, weight)
        if weight is None:
            weight = self._max_priority
        self._it_sum[idx] = weight**self._alpha
        self._it_min[idx] = weight**self._alpha

    def _sample_proportional(self, num_items: int):
        res = []
        for _ in range(num_items):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage))
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    @DeveloperAPI
    def sample(self, num_items: int, beta: float) -> SampleBatchType:
        """Sample a batch of experiences and return priority weights, indices.

        Args:
            num_items (int): Number of items to sample from this buffer.
            beta (float): To what degree to use importance weights
                (0 - no corrections, 1 - full correction).

        Returns:
            SampleBatchType: Concatenated batch of items including "weights"
                and "batch_indexes" fields denoting IS of each sampled
                transition and original idxes in buffer of sampled experiences.
        """
        assert beta >= 0.0
        self._num_sampled += num_items

        idxes = self._sample_proportional(num_items)

        weights = []
        batch_indexes = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            count = self._storage[idx].count
            weights.extend([weight / max_weight] * count)
            batch_indexes.extend([idx] * count)
        batch = self._encode_sample(idxes)

        # Note: prioritization is not supported in lockstep replay mode.
        if isinstance(batch, SampleBatch):
            assert len(weights) == batch.count
            assert len(batch_indexes) == batch.count
            batch["weights"] = np.array(weights)
            batch["batch_indexes"] = np.array(batch_indexes)

        return batch

    @DeveloperAPI
    def update_priorities(self, idxes, priorities):
        """Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        Parameters
        ----------
        idxes: [int]
          List of idxes of sampled transitions
        priorities: [float]
          List of updated priorities corresponding to
          transitions at the sampled idxes denoted by
          variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            delta = priority**self._alpha - self._it_sum[idx]
            self._prio_change_stats.push(delta)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)

    @DeveloperAPI
    def stats(self, debug=False):
        parent = ReplayBuffer.stats(self, debug)
        if debug:
            parent.update(self._prio_change_stats.stats())
        return parent
class PrioritizedReplayBuffer(ReplayBuffer):
    """This buffer implements Prioritized Experience Replay

    The algorithm has been described by Tom Schaul et. al. in "Prioritized
    Experience Replay". See https://arxiv.org/pdf/1511.05952.pdf for
    the full paper.
    """
    @ExperimentalAPI
    def __init__(self,
                 capacity: int = 10000,
                 storage_unit: str = "timesteps",
                 alpha: float = 1.0,
                 **kwargs):
        """Initializes a PrioritizedReplayBuffer instance.

        Args:
            capacity: Max number of timesteps to store in the FIFO
                buffer. After reaching this number, older samples will be
                dropped to make space for new ones.
            storage_unit: Either 'timesteps', 'sequences' or
                'episodes'. Specifies how experiences are stored.
            alpha: How much prioritization is used
                (0.0=no prioritization, 1.0=full prioritization).
            **kwargs: Forward compatibility kwargs.
        """
        ReplayBuffer.__init__(self, capacity, storage_unit, **kwargs)

        assert alpha > 0
        self._alpha = alpha

        # Segment tree must have capacity that is a power of 2
        it_capacity = 1
        while it_capacity < self.capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)

    @ExperimentalAPI
    @override(ReplayBuffer)
    def _add_single_batch(self, item: SampleBatchType, **kwargs) -> None:
        """Add a batch of experiences to self._storage with weight.

        An item consists of either one or more timesteps, a sequence or an
        episode. Differs from add() in that it does not consider the storage
        unit or type of batch and simply stores it.

        Args:
            item: The item to be added.
            **kwargs: Forward compatibility kwargs.
        """
        weight = kwargs.get("weight", None)

        if weight is None:
            weight = self._max_priority

        self._it_sum[self._next_idx] = weight**self._alpha
        self._it_min[self._next_idx] = weight**self._alpha

        ReplayBuffer._add_single_batch(self, item)

    def _sample_proportional(self, num_items: int) -> List[int]:
        res = []
        for _ in range(num_items):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage))
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    @ExperimentalAPI
    @override(ReplayBuffer)
    def sample(self, num_items: int, beta: float,
               **kwargs) -> Optional[SampleBatchType]:
        """Sample `num_items` items from this buffer, including prio. weights.

        Samples in the results may be repeated.

        Examples for storage of SamplesBatches:
        - If storage unit `timesteps` has been chosen and batches of
        size 5 have been added, sample(5) will yield a concatenated batch of
        15 timesteps.
        - If storage unit 'sequences' has been chosen and sequences of
        different lengths have been added, sample(5) will yield a concatenated
        batch with a number of timesteps equal to the sum of timesteps in
        the 5 sampled sequences.
        - If storage unit 'episodes' has been chosen and episodes of
        different lengths have been added, sample(5) will yield a concatenated
        batch with a number of timesteps equal to the sum of timesteps in
        the 5 sampled episodes.

        Args:
            num_items: Number of items to sample from this buffer.
            beta: To what degree to use importance weights
                (0 - no corrections, 1 - full correction).
            **kwargs: Forward compatibility kwargs.

        Returns:
            Concatenated SampleBatch of items including "weights" and
            "batch_indexes" fields denoting IS of each sampled
            transition and original idxes in buffer of sampled experiences.
        """
        assert beta >= 0.0

        idxes = self._sample_proportional(num_items)

        weights = []
        batch_indexes = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self))**(-beta)
            count = self._storage[idx].count
            # If zero-padded, count will not be the actual batch size of the
            # data.
            if (isinstance(self._storage[idx], SampleBatch)
                    and self._storage[idx].zero_padded):
                actual_size = self._storage[idx].max_seq_len
            else:
                actual_size = count
            weights.extend([weight / max_weight] * actual_size)
            batch_indexes.extend([idx] * actual_size)
            self._num_timesteps_sampled += count
        batch = self._encode_sample(idxes)

        # Note: prioritization is not supported in multi agent lockstep
        if isinstance(batch, SampleBatch):
            batch["weights"] = np.array(weights)
            batch["batch_indexes"] = np.array(batch_indexes)

        return batch

    @ExperimentalAPI
    def update_priorities(self, idxes: List[int],
                          priorities: List[float]) -> None:
        """Update priorities of items at given indices.

        Sets priority of item at index idxes[i] in buffer
        to priorities[i].

        Args:
            idxes: List of indices of items
            priorities: List of updated priorities corresponding to
                items at the idxes denoted by variable `idxes`.
        """
        # Making sure we don't pass in e.g. a torch tensor.
        assert isinstance(
            idxes, (list, np.ndarray)
        ), "ERROR: `idxes` is not a list or np.ndarray, but " "{}!".format(
            type(idxes).__name__)
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            delta = priority**self._alpha - self._it_sum[idx]
            self._prio_change_stats.push(delta)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)

    @ExperimentalAPI
    @override(ReplayBuffer)
    def stats(self, debug: bool = False) -> Dict:
        """Returns the stats of this buffer.

        Args:
            debug: If true, adds sample eviction statistics to the
                returned stats dict.

        Returns:
            A dictionary of stats about this buffer.
        """
        parent = ReplayBuffer.stats(self, debug)
        if debug:
            parent.update(self._prio_change_stats.stats())
        return parent

    @ExperimentalAPI
    @override(ReplayBuffer)
    def get_state(self) -> Dict[str, Any]:
        """Returns all local state.

        Returns:
            The serializable local state.
        """
        # Get parent state.
        state = super().get_state()
        # Add prio weights.
        state.update({
            "sum_segment_tree": self._it_sum.get_state(),
            "min_segment_tree": self._it_min.get_state(),
            "max_priority": self._max_priority,
        })
        return state

    @ExperimentalAPI
    @override(ReplayBuffer)
    def set_state(self, state: Dict[str, Any]) -> None:
        """Restores all local state to the provided `state`.

        Args:
            state: The new state to set this buffer. Can be obtained by
                calling `self.get_state()`.
        """
        super().set_state(state)
        self._it_sum.set_state(state["sum_segment_tree"])
        self._it_min.set_state(state["min_segment_tree"])
        self._max_priority = state["max_priority"]
示例#8
0
    def test_max_interval_tree(self):
        tree = MinSegmentTree(4)

        tree[0] = 1.0
        tree[2] = 0.5
        tree[3] = 3.0

        assert np.isclose(tree.min(), 0.5)
        assert np.isclose(tree.min(0, 2), 1.0)
        assert np.isclose(tree.min(0, 3), 0.5)
        assert np.isclose(tree.min(0, -1), 0.5)
        assert np.isclose(tree.min(2, 4), 0.5)
        assert np.isclose(tree.min(3, 4), 3.0)

        tree[2] = 0.7

        assert np.isclose(tree.min(), 0.7)
        assert np.isclose(tree.min(0, 2), 1.0)
        assert np.isclose(tree.min(0, 3), 0.7)
        assert np.isclose(tree.min(0, -1), 0.7)
        assert np.isclose(tree.min(2, 4), 0.7)
        assert np.isclose(tree.min(3, 4), 3.0)

        tree[2] = 4.0

        assert np.isclose(tree.min(), 1.0)
        assert np.isclose(tree.min(0, 2), 1.0)
        assert np.isclose(tree.min(0, 3), 1.0)
        assert np.isclose(tree.min(0, -1), 1.0)
        assert np.isclose(tree.min(2, 4), 3.0)
        assert np.isclose(tree.min(2, 3), 4.0)
        assert np.isclose(tree.min(2, -1), 4.0)
        assert np.isclose(tree.min(3, 4), 3.0)
示例#9
0
class PrioritizedReplayBuffer(ReplayBuffer):
    @ExperimentalAPI
    def __init__(
        self,
        capacity: int = 10000,
        storage_unit: str = "timesteps",
        alpha: float = 1.0,
    ):
        """Initializes a PrioritizedReplayBuffer instance.

        Args:
            capacity: Max number of timesteps to store in the FIFO
                buffer. After reaching this number, older samples will be
                dropped to make space for new ones.
            storage_unit: Either 'sequences' or 'timesteps'. Specifies how
                experiences are stored.
            alpha: How much prioritization is used
                (0.0=no prioritization, 1.0=full prioritization).
        """
        ReplayBuffer.__init__(self, capacity, storage_unit)

        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < self.capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)

    @ExperimentalAPI
    @override(ReplayBuffer)
    def add(self, batch: SampleBatchType, weight: float) -> None:
        """Add a batch of experiences.

        Args:
            batch: SampleBatch to add to this buffer's storage.
            weight: The weight of the added sample used in subsequent sampling
                steps.
        """
        idx = self._next_idx

        assert batch.count > 0, batch
        warn_replay_capacity(item=batch, num_items=self.capacity / batch.count)

        # Update our timesteps counts.
        self._num_timesteps_added += batch.count
        self._num_timesteps_added_wrap += batch.count

        if self._next_idx >= len(self._storage):
            self._storage.append(batch)
            self._est_size_bytes += batch.size_bytes()
        else:
            self._storage[self._next_idx] = batch

        # Wrap around storage as a circular buffer once we hit capacity.
        if self._num_timesteps_added_wrap >= self.capacity:
            self._eviction_started = True
            self._num_timesteps_added_wrap = 0
            self._next_idx = 0
        else:
            self._next_idx += 1

        # Eviction of older samples has already started (buffer is "full").
        if self._eviction_started:
            self._evicted_hit_stats.push(self._hit_count[self._next_idx])
            self._hit_count[self._next_idx] = 0

        if weight is None:
            weight = self._max_priority
        self._it_sum[idx] = weight**self._alpha
        self._it_min[idx] = weight**self._alpha

    def _sample_proportional(self, num_items: int) -> List[int]:
        res = []
        for _ in range(num_items):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage))
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    @ExperimentalAPI
    @override(ReplayBuffer)
    def sample(self, num_items: int, beta: float) -> Optional[SampleBatchType]:
        """Sample `num_items` items from this buffer, including prio. weights.

        If less than `num_items` records are in this buffer, some samples in
        the results may be repeated to fulfil the batch size (`num_items`)
        request.

        Args:
            num_items: Number of items to sample from this buffer.
            beta: To what degree to use importance weights
                (0 - no corrections, 1 - full correction).

        Returns:
            Concatenated batch of items including "weights" and
            "batch_indexes" fields denoting IS of each sampled
            transition and original idxes in buffer of sampled experiences.
        """
        # If we don't have any samples yet in this buffer, return None.
        if len(self) == 0:
            return None

        assert beta >= 0.0

        idxes = self._sample_proportional(num_items)

        weights = []
        batch_indexes = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self))**(-beta)
            count = self._storage[idx].count
            # If zero-padded, count will not be the actual batch size of the
            # data.
            if (isinstance(self._storage[idx], SampleBatch)
                    and self._storage[idx].zero_padded):
                actual_size = self._storage[idx].max_seq_len
            else:
                actual_size = count
            weights.extend([weight / max_weight] * actual_size)
            batch_indexes.extend([idx] * actual_size)
            self._num_timesteps_sampled += count
        batch = self._encode_sample(idxes)

        # Note: prioritization is not supported in lockstep replay mode.
        if isinstance(batch, SampleBatch):
            batch["weights"] = np.array(weights)
            batch["batch_indexes"] = np.array(batch_indexes)

        return batch

    @ExperimentalAPI
    def update_priorities(self, idxes: List[int],
                          priorities: List[float]) -> None:
        """Update priorities of sampled transitions.

        Sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        Args:
            idxes: List of indices of sampled transitions
            priorities: List of updated priorities corresponding to
                transitions at the sampled idxes denoted by
                variable `idxes`.
        """
        # Making sure we don't pass in e.g. a torch tensor.
        assert isinstance(
            idxes, (list, np.ndarray)
        ), "ERROR: `idxes` is not a list or np.ndarray, but " "{}!".format(
            type(idxes).__name__)
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            delta = priority**self._alpha - self._it_sum[idx]
            self._prio_change_stats.push(delta)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)

    @ExperimentalAPI
    @override(ReplayBuffer)
    def stats(self, debug: bool = False) -> Dict:
        """Returns the stats of this buffer.

        Args:
            debug: If true, adds sample eviction statistics to the
                returned stats dict.

        Returns:
            A dictionary of stats about this buffer.
        """
        parent = ReplayBuffer.stats(self, debug)
        if debug:
            parent.update(self._prio_change_stats.stats())
        return parent

    @ExperimentalAPI
    @override(ReplayBuffer)
    def get_state(self) -> Dict[str, Any]:
        """Returns all local state.

        Returns:
            The serializable local state.
        """
        # Get parent state.
        state = super().get_state()
        # Add prio weights.
        state.update({
            "sum_segment_tree": self._it_sum.get_state(),
            "min_segment_tree": self._it_min.get_state(),
            "max_priority": self._max_priority,
        })
        return state

    @ExperimentalAPI
    @override(ReplayBuffer)
    def set_state(self, state: Dict[str, Any]) -> None:
        """Restores all local state to the provided `state`.

        Args:
            state: The new state to set this buffer. Can be obtained by
                calling `self.get_state()`.
        """
        super().set_state(state)
        self._it_sum.set_state(state["sum_segment_tree"])
        self._it_min.set_state(state["min_segment_tree"])
        self._max_priority = state["max_priority"]
示例#10
0
class PrioritizedReplayBuffer(ReplayBuffer):
    @DeveloperAPI
    def __init__(self,
                 capacity: int = 10000,
                 alpha: float = 1.0,
                 size: Optional[int] = DEPRECATED_VALUE):
        """Initializes a PrioritizedReplayBuffer instance.

        Args:
            capacity (int): Max number of timesteps to store in the FIFO
                buffer. After reaching this number, older samples will be
                dropped to make space for new ones.
            alpha (float): How much prioritization is used
                (0.0=no prioritization, 1.0=full prioritization).
        """
        super(PrioritizedReplayBuffer, self).__init__(capacity, size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < self.capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
        self._prio_change_stats = WindowStat("reprio", 1000)

    @DeveloperAPI
    @override(ReplayBuffer)
    def add(self, item: SampleBatchType, weight: float) -> None:
        idx = self._next_idx
        super(PrioritizedReplayBuffer, self).add(item, weight)
        if weight is None:
            weight = self._max_priority
        self._it_sum[idx] = weight**self._alpha
        self._it_min[idx] = weight**self._alpha

    def _sample_proportional(self, num_items: int) -> List[int]:
        res = []
        for _ in range(num_items):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage))
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    @DeveloperAPI
    @override(ReplayBuffer)
    def sample(self, num_items: int, beta: float) -> SampleBatchType:
        """Sample a batch of experiences and return priority weights, indices.

        Args:
            num_items (int): Number of items to sample from this buffer.
            beta (float): To what degree to use importance weights
                (0 - no corrections, 1 - full correction).

        Returns:
            SampleBatchType: Concatenated batch of items including "weights"
                and "batch_indexes" fields denoting IS of each sampled
                transition and original idxes in buffer of sampled experiences.
        """
        assert beta >= 0.0

        idxes = self._sample_proportional(num_items)

        weights = []
        batch_indexes = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            count = self._storage[idx].count
            # If zero-padded, count will not be the actual batch size of the
            # data.
            if isinstance(self._storage[idx], SampleBatch) and \
                    self._storage[idx].zero_padded:
                actual_size = self._storage[idx].max_seq_len
            else:
                actual_size = count
            weights.extend([weight / max_weight] * actual_size)
            batch_indexes.extend([idx] * actual_size)
            self._num_timesteps_sampled += count
        batch = self._encode_sample(idxes)

        # Note: prioritization is not supported in lockstep replay mode.
        if isinstance(batch, SampleBatch):
            batch["weights"] = np.array(weights)
            batch["batch_indexes"] = np.array(batch_indexes)

        return batch

    @DeveloperAPI
    def update_priorities(self, idxes: List[int],
                          priorities: List[float]) -> None:
        """Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        Parameters
        ----------
        idxes: [int]
          List of idxes of sampled transitions
        priorities: [float]
          List of updated priorities corresponding to
          transitions at the sampled idxes denoted by
          variable `idxes`.
        """
        # Making sure we don't pass in e.g. a torch tensor.
        assert isinstance(idxes, (list, np.ndarray)), \
            "ERROR: `idxes` is not a list or np.ndarray, but " \
            "{}!".format(type(idxes).__name__)
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            delta = priority**self._alpha - self._it_sum[idx]
            self._prio_change_stats.push(delta)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)

    @DeveloperAPI
    @override(ReplayBuffer)
    def stats(self, debug: bool = False) -> Dict:
        parent = ReplayBuffer.stats(self, debug)
        if debug:
            parent.update(self._prio_change_stats.stats())
        return parent

    @DeveloperAPI
    @override(ReplayBuffer)
    def get_state(self) -> Dict[str, Any]:
        """Returns all local state.

        Returns:
            Dict[str, Any]: The serializable local state.
        """
        # Get parent state.
        state = super().get_state()
        # Add prio weights.
        state.update({
            "sum_segment_tree": self._it_sum.get_state(),
            "min_segment_tree": self._it_min.get_state(),
            "max_priority": self._max_priority,
        })
        return state

    @DeveloperAPI
    @override(ReplayBuffer)
    def set_state(self, state: Dict[str, Any]) -> None:
        """Restores all local state to the provided `state`.

        Args:
            state (Dict[str, Any]): The new state to set this buffer. Can be
                obtained by calling `self.get_state()`.
        """
        super().set_state(state)
        self._it_sum.set_state(state["sum_segment_tree"])
        self._it_min.set_state(state["min_segment_tree"])
        self._max_priority = state["max_priority"]