コード例 #1
0
def get_candidate_keys(pd, key, framerange=[2, 10]):
    dataset = rhfp.Dataset(pd)
    last_frame = dataset.trajec(key).frames[-1]
    candidate_keys = data_slicing.get_keys_in_framerange(
        pd, [last_frame - framerange[0], last_frame + framerange[1]]).tolist()
    candidate_keys.remove(key)
    return candidate_keys
コード例 #2
0
def check_distance_on_candidate_keys(pd, key, candidate_keys, max_distance=10):
    frame = np.max(pd[pd.objid == key].frames)
    pd_subset = data_slicing.get_data_in_framerange(pd,
                                                    [frame - 50, frame + 50])
    dataset = rhfp.Dataset(pd_subset)
    key_position = np.array([
        dataset.trajec(key).position_x[-1],
        dataset.trajec(key).position_y[-1]
    ])
    errors = []
    for candidate in candidate_keys:
        if candidate not in pd_subset.objid.values:
            e = np.inf
        # don't accept candidates that fully contain all the frames of the key
        #elif dataset.trajec(candidate).frames[0] < dataset.trajec(key).frames[0] and dataset.trajec(candidate).frames[-1] > dataset.trajec(key).frames[-1]:
        #    e = np.inf
        else:
            candidates_frames = dataset.trajec(candidate).frames
            index = np.argmin(
                np.abs(candidates_frames - dataset.trajec(key).frames[-1]))
            candidate_position = np.array([
                dataset.trajec(candidate).position_x[index],
                dataset.trajec(candidate).position_y[index]
            ])
            e = np.linalg.norm(key_position - candidate_position)
        errors.append(e)
    errors = np.array(errors)
    indices_ok = np.where(errors < max_distance)
    return np.array(candidate_keys)[indices_ok].tolist()
コード例 #3
0
    def __init__(self, path, keys=None):
        self.pd, self.dvbag, self.backgroundimg = load_data_and_delta_video(
            path)
        self.dataset = read_hdf5_file_to_pandas.Dataset(self.pd)
        self.backgroundimg_filename = get_filename(path, '_bgimg_')
        self.binsx = None
        self.binsy = None

        self.filename = os.path.expanduser(
            os.path.join(path, 'stitches.pickle'))
        f = open(self.filename, 'w')
        self.stitches = []
        pickle.dump(self.stitches, f)
        f.close()

        if keys is None:
            keys = np.unique(self.pd.objid.values)
        self.keys = keys
        self.key_index = -1
        self.key = None
        self.candidate = None
        self.candidates = None
        self.candidate_index = -1
        self.new_key = True

        ## create GUI
        self.app = QtGui.QApplication([])
        self.w = QtGui.QWidget()
        self.layout = QtGui.QGridLayout()
        self.w.setLayout(self.layout)

        next_btn = QtGui.QPushButton('next match')
        next_btn.pressed.connect(self.next_stitch)
        self.layout.addWidget(next_btn, 0, 0)

        save_btn = QtGui.QPushButton('save stitch')
        save_btn.pressed.connect(self.save_stitch)
        self.layout.addWidget(save_btn, 1, 0)

        reject_btn = QtGui.QPushButton('reject stitch')
        reject_btn.pressed.connect(self.reject_stitch)
        self.layout.addWidget(reject_btn, 2, 0)

        self.button = 'accepted'

        self.p1 = pg.PlotWidget(title="Basic array plotting")

        # for showing starting point
        self.scatter = pg.ScatterPlotItem()
        self.p1.addItem(self.scatter)
        self.scatter.setZValue(0)

        self.layout.addWidget(self.p1, 0, 1)

        self.w.show()
コード例 #4
0
def interpolate_keys(pd, keys):
    dataset = rhfp.Dataset(pd)
    first_frame = dataset.trajec(keys[0]).frames[0]
    last_frame = dataset.trajec(keys[-1]).frames[-1]
    new_idx = np.arange(first_frame, last_frame + 1)

    pd_subset = data_slicing.get_pd_subset_from_keys(pd, keys)

    # now remove duplicate frames
    pd_subset = pd_subset.drop_duplicates('frames')

    # now interpolate missing frames
    d = np.diff(pd_subset.frames.values)
    if np.max(d) > 1:
        print 'reindexing'
        pd_subset.reindex(new_idx).interpolate()
        d = np.diff(pd_subset.frames.values)
        print np.max(d), ' if this value == 1, everything worked'
コード例 #5
0
 def load_data(self):
     if self.load_original:
         self.original_pd = mta.read_hdf5_file_to_pandas.load_data_as_pandas_dataframe_from_hdf5_file(self.data_filename)
     print 'loading data'
     self.pd, self.config = mta.read_hdf5_file_to_pandas.load_and_preprocess_data(self.data_filename)
     self.path = self.config.path
     self.dataset = read_hdf5_file_to_pandas.Dataset(self.pd)
     filename = os.path.join(self.path, 'delete_cut_join_instructions.pickle')
     if os.path.exists(filename):
         f = open(filename, 'r+')
         data = pickle.load(f)
         f.close()
     else:
         data = []
     self.instructions = data
     self.calc_time_etc()
     print 'data loaded'
     print 'N Trajecs: ', len(self.pd.groupby('objid'))
コード例 #6
0
 def load_data(self):
     self.pd, self.config = mta.read_hdf5_file_to_pandas.load_and_preprocess_data(
         self.data_filename)
     self.path = self.config.path
     self.dataset = read_hdf5_file_to_pandas.Dataset(self.pd)
     filename = os.path.join(self.path,
                             'delete_cut_join_instructions.pickle')
     if os.path.exists(filename):
         f = open(filename, 'r+')
         data = pickle.load(f)
         f.close()
     else:
         data = []
     self.instructions = data
     # extract time and speed
     self.time_epoch = self.pd.time_epoch.groupby(
         self.pd.index).mean().values
     self.speed = self.pd.speed.groupby(self.pd.index).mean().values
     self.nflies = data_slicing.get_nkeys_per_frame(self.pd)
     self.time_epoch_continuous = np.linspace(np.min(self.time_epoch),
                                              np.max(self.time_epoch),
                                              len(self.nflies))
コード例 #7
0
    def draw_trajectories(self):
        for plotted_trace in self.plotted_traces:
            self.ui.qtplot_trajectory.removeItem(plotted_trace)
        self.ui.qtplot_trajectory.clear()

        pd_subset = mta.data_slicing.get_data_in_epoch_timerange(
            self.pd, self.troi)
        self.dataset = read_hdf5_file_to_pandas.Dataset(self.pd)

        self.init_bg_image()

        # plot a heatmap of the trajectories, for error checking
        h = mta.plot.get_heatmap(pd_subset,
                                 self.binsy,
                                 self.binsx,
                                 position_x='position_y',
                                 position_y='position_x',
                                 position_z='position_z',
                                 position_z_slice=None)
        indices = np.where(h != 0)

        img = copy.copy(self.backgroundimg)
        img[indices] = 0

        self.img = pg.ImageItem(img, autoLevels=False)
        self.ui.qtplot_trajectory.addItem(self.img)
        self.img.setZValue(-200)  # make sure image is behind other data

        # cross hair mouse stuff
        self.ui.qtplot_trajectory.scene().sigMouseMoved.connect(
            self.mouse_moved)
        self.ui.qtplot_trajectory.scene().sigMouseClicked.connect(
            self.mouse_clicked)
        self.crosshair_vLine = pg.InfiniteLine(angle=90, movable=False)
        self.crosshair_hLine = pg.InfiniteLine(angle=0, movable=False)
        self.ui.qtplot_trajectory.addItem(self.crosshair_vLine,
                                          ignoreBounds=True)
        self.ui.qtplot_trajectory.addItem(self.crosshair_hLine,
                                          ignoreBounds=True)

        keys = np.unique(pd_subset.objid.values)
        self.plotted_traces_keys = []
        self.plotted_traces = []
        if len(keys) < 100:
            for key in keys:
                trajec = self.dataset.trajec(key)
                first_time = np.max([self.troi[0], trajec.time_epoch[0]])
                first_time_index = np.argmin(
                    np.abs(trajec.time_epoch - first_time))
                last_time = np.min([self.troi[-1], trajec.time_epoch[-1]])
                last_time_index = np.argmin(
                    np.abs(trajec.time_epoch - last_time))
                #if trajec.length > 5:
                if key not in self.trajec_to_color_dict.keys():
                    color = get_random_color()
                    self.trajec_to_color_dict.setdefault(key, color)
                else:
                    color = self.trajec_to_color_dict[key]
                if key in self.trajec_width_dict.keys():
                    width = self.trajec_width_dict[key]
                else:
                    width = 2
                if self.ui.annotated_color_checkbox.checkState():
                    if key in self.annotated_keys:
                        color = (0, 0, 0)
                        width = 6
                if self.ui.annotated_hide_checkbox.checkState():
                    if key in self.annotated_keys:
                        color = (0, 0, 0, 0)
                        width = 1
                pen = pg.mkPen(color, width=width)
                plotted_trace = self.ui.qtplot_trajectory.plot(
                    trajec.position_y[first_time_index:last_time_index],
                    trajec.position_x[first_time_index:last_time_index],
                    pen=pen)
                self.plotted_traces.append(plotted_trace)
                self.plotted_traces_keys.append(key)

            for i, key in enumerate(self.plotted_traces_keys):
                self.plotted_traces[i].curve.setClickable(
                    True, width=self.clickable_width)
                self.plotted_traces[i].curve.key = key
                self.plotted_traces[i].curve.sigClicked.connect(
                    self.trace_clicked)

        self.draw_data_to_add()
        self.draw_vlines_for_selected_trajecs()