def center(io_paras, data_paras, center_start, center_end, center_step, diag_cycle=0, mode='diag', normalize=True, stripe_removal=10, phase_retrieval=False): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir+"/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start+1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start+1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') # Set start and end of each subcycle projections_start = diag_cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) slice2 = slice(z_start, z_end, z_step) slice3 = slice(x_start, x_end, x_step) slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print("Running center diagnosis (projs %s to %s)" % (projections_start, projections_end)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None) ## Remove stripes caused by dead pixels in the detector if stripe_removal: data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=2, pad=True, ncore=None, nchunk=None) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: data = tomopy.retrieve_phase(data, pixel_size=6.5e-5, dist=33, energy=30, alpha=1e-3, pad=True, ncore=_ncore, nchunk=None) ## Determine and set the center of rotation ### Using optimization method to automatically find the center # d.optimize_center() if 'opti' in mode: print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. if 'diag' in mode: if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center(data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!")
def recon(io_paras, data_paras, rot_center=None, normalize=True, stripe_removal=10, phase_retrieval=False, opt_center=False, diag_center=False, output="tiff"): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir+"/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start+1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start+1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') rot_center_copy = rot_center for cycle in xrange(NumCycles): # Set start and end of each cycle projections_start = cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) slice2 = slice(z_start, z_end, z_step) slice3 = slice(x_start, x_end, x_step) slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print("Running cycle #%s (projs %s to %s)" % (cycle, projections_start, projections_end)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: print("Normalizing data ...") # white = white.mean(axis=0).reshape(-1, *data.shape[1:]) # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:]) # data = (data - dark) / (white - dark) data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None)[...] ## Remove stripes caused by dead pixels in the detector if stripe_removal: print("Removing stripes ...") data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=2, pad=True, ncore=_ncore, nchunk=None) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: print("Retrieving phase ...") data = tomopy.retrieve_phase(data, pixel_size=1e-4, dist=50, energy=20, alpha=1e-3, pad=True, ncore=_ncore, nchunk=None) ## Determine and set the center of rotation if opt_center or (rot_center == None): ### Using optimization method to automatically find the center # d.optimize_center() print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) if diag_center: ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. # d.diagnose_center() if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center(data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!") ## Flip odd frames if (cycle % 2): data[...] = data[...,::-1] rot_center = data.shape[-1] - rot_center_copy else: rot_center = rot_center_copy ## Reconstruction using FBP print("Running gridrec ...", end="") sys.stdout.flush() recon = tomopy.recon(data, theta, center=rot_center, emission=False, algorithm='gridrec', # num_gridx=None, num_gridy=None, filter_name='shepp', ncore=_ncore, nchunk=_nchunk) print("Done!") ## Collect background # if cycle == 0: # bg = recon # elif cycle < 4: # bg += recon # else: # recon -= bg/4. # Write to stack of TIFFs. if not os.path.exists(recon_dir): os.makedirs(recon_dir) out_fname = recon_dir+"/"+out_prefix+"t_%d" % (cycle + cycle_offset) if "hdf" in output: hdf_fname = out_fname + ".hdf5" print("Writing reconstruction output file %s..." % hdf_fname, end="") sys.stdout.flush() tomopy.write_hdf5(recon, fname=hdf_fname, gname='exchange', overwrite=False) print("Done!") if "tif" in output: tiff_fname = out_fname + ".tiff" print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff_stack(recon, fname=tiff_fname, axis=0, digit=5, start=0, overwrite=False) print("Done!") if "bin" in output: bin_fname = out_fname + ".bin" print("Writing reconstruction to binary files %s..." % bin_fname, end="") sys.stdout.flush() recon.tofile(bin_fname)
def recon3(io_paras, data_paras, rot_center=None, normalize=True, stripe_removal=10, stripe_sigma=2, phase_retrieval=False, opt_center=False, diag_center=False, output="tiff", z_recon_size=None): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir + "/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir + "/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get( 'ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start + 1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start + 1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') # TIMBIR parameters NumSubCycles = data_paras.get('NumSubCycles', 1) # Number of subcycles in one cycle, K SlewSpeed = data_paras.get('SlewSpeed', 0) # In deg/s MinAcqTime = data_paras.get('MinAcqTime', 0) # In s TotalNumCycles = data_paras.get( 'TotalNumCycles', 1) # Total number of cycles in the full scan data ProjPerRecon = data_paras.get( 'ProjPerRecon', ProjPerCycle) # Number of projections per reconstruction # Calculate thetas for interlaced scan theta = gen_theta_timbir(NumSubCycles, ProjPerCycle, SlewSpeed, MinAcqTime, TotalNumCycles) if ProjPerRecon is None: ProjPerCycle = theta.size // TotalNumCycles else: ProjPerCycle = ProjPerRecon print("Will use %s projections per reconstruction." % ProjPerCycle) # Distribute z slices to processes if z_step is None: z_step = 1 z_pool = get_pool(z_start, z_end, z_step, z_chunk_size=z_recon_size, fmt='slice') slice3 = slice(x_start, x_end, x_step) rot_center_copy = rot_center for cycle in xrange(NumCycles): # Set start and end of each cycle projections_start = cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) # Setup continuous output if "cont" in output: if not os.path.exists(recon_dir): os.makedirs(recon_dir) cont_fname = recon_dir+"/"+out_prefix+"t_%d_z_%d_%d.bin" \ % (cycle + cycle_offset, z_start, z_end) cont_file = file(cont_fname, 'wb') # Distribute z slices to processes for i in range(_rank, len(z_pool), _nprocs): slice2 = z_pool[i] slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print( "Running cycle #%s (projs %s to %s, z = %s - %s) on process %s of %s" % (cycle, projections_start, projections_end, slice2.start, slice2.stop, _rank, _nprocs)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) # data += 1 # theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) # data = tomopy.focus_region(data, dia=1560, xcoord=1150, ycoord=1080, # center=rot_center, pad=False, corr=True) # rot_center = None # print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." # % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: print("Normalizing data ...") # white = white.mean(axis=0).reshape(-1, *data.shape[1:]) # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:]) # data = (data - dark) / (white - dark) data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=_nchunk)[...] ## Remove stripes caused by dead pixels in the detector if stripe_removal: print("Removing stripes ...") data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=stripe_sigma, pad=True, ncore=_ncore, nchunk=_nchunk) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: print("Retrieving phase ...") data = tomopy.retrieve_phase(data, pixel_size=1.1e-4, dist=6, energy=25.7, alpha=1e-2, pad=True, ncore=_ncore, nchunk=_nchunk) ## Determine and set the center of rotation if opt_center: # or (rot_center == None): ### Using optimization method to automatically find the center # d.optimize_center() print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) if diag_center: ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. # d.diagnose_center() if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center( data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!") ## Flip odd frames # if (cycle % 2): # data[...] = data[...,::-1] # rot_center = data.shape[-1] - rot_center_copy # else: # rot_center = rot_center_copy ## Reconstruction using FBP print("Running gridrec ...", end="") sys.stdout.flush() recon = tomopy.recon( data, theta[slice1], center=rot_center, emission=False, algorithm='gridrec', # num_gridx=None, num_gridy=None, filter_name='shepp', ncore=_ncore, nchunk=_nchunk) print("Done!") ## Collect background # if cycle == 0: # bg = recon # elif cycle < 4: # bg += recon # else: # recon -= bg/4. # Write to stack of TIFFs. if not os.path.exists(recon_dir): os.makedirs(recon_dir) out_fname = recon_dir + "/" + out_prefix + "t_%d_z_" % ( cycle + cycle_offset) if "hdf" in output: hdf_fname = out_fname + "%d_%d.hdf5" % (slice2.start, slice2.stop) print("Writing reconstruction output file %s..." % hdf_fname, end="") sys.stdout.flush() tomopy.write_hdf5(recon, fname=hdf_fname, gname='exchange', overwrite=False) print("Done!") if "tif" in output: if "stack" in output: # single stacked file for multiple z tiff_fname = out_fname + "%d_%d.tiff" % (slice2.start, slice2.stop) print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff(recon, fname=tiff_fname, overwrite=False) print("Done!") else: # separate files for different z for iz, z in enumerate( range(slice2.start, slice2.stop, slice2.step)): tiff_fname = out_fname + "%d.tiff" % z print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff(recon[iz], fname=tiff_fname, overwrite=False) print("Done!") if "bin" in output: bin_fname = out_fname + "%d_%d.bin" % (slice2.start, slice2.stop) print("Writing reconstruction to binary files %s..." % bin_fname, end="") sys.stdout.flush() recon.tofile(bin_fname) if "cont" in output: print("Writing reconstruction to binary files %s..." % cont_fname, end="") sys.stdout.flush() recon.tofile(cont_file) print("Done!") if "cont" in output: cont_file.close() if _usempi: comm.Barrier() if _rank == 0: print("All done!")