def _RNN(): ran = lambda x: np.random.random(x) - 0.5 phrase_expr = lambda W_mat, word_left, word_right, bias: VSF( 'tanh', Add(Dot(W_mat, Concat(word_left, word_right)), bias)) W = declareAndCache(u'W') W.val = ran((200, 400)) bias = declareAndCache(u'b', ) bias.val = ran((200, )) u_score = declareAndCache(u'u_score', ) u_score.val = ran((200, )) assert Var(u'W') is W phrase_w1w2 = lambda w1, w2: phrase_expr(W, w1, w2, bias) w1 = declareAndCache(u'w1') w2 = declareAndCache(u'w2') w1.val, w2.val = ran(200), ran(200) score = lambda phrase: Dot(u_score, phrase) #score(phrase_w1w2(w1,w2)).diff(W) print unicode(phrase_w1w2(w1, w2).diff(W))
def test_GradientNumericalChecks(reset_NodeDict): ran = lambda x: np.random.random(x) - 0.5 x, y, a, b = Var('x'), Var('y'), Var('a'), Var('b') D, C, B, A = Var('D'), Var('C'), Var('B'), Var('A') #g:= x⋅C⋅sin(B⋅sin(A⋅y+a)+b) g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))), b))) g.cache() #0.01 is may not small enough for g=x⋅C⋅sin(B⋅sin(A⋅y+a)+b). scale = 0.001 for var in [B, A, y, a]: p = [] p_ran = [] for i in range(3): x.val, y.val, a.val, b.val = ran((1, 4)), ran((4, 1)), ran( (5, 1)), ran((6, 1)) #D,C,B,A = Var('D', ran((4,4))), Var('C', ran((4,6))), Var('B', ran((6,5))), Var('A', ran((5,4))) D.val, C.val, B.val, A.val = ran((4, 4)), ran((4, 6)), ran( (6, 5)), ran((5, 4)) gradient = Differentiation(g, var) gradient.cache() var0 = var.val delta = NormalizedMatrix(ran(var.val.shape), scale) rand_grad = gradient.val.copy() np.random.shuffle(rand_grad) rand_grad = NormalizedMatrix(ran(gradient.val.shape), gradient.val.sum()) dg_ran = np.sum(delta * rand_grad) dg_grad = np.sum(delta * gradient.val) g0 = g.val var.val = var0 + delta g1 = g.val dg = g1 - g0 p.append(dg / dg_grad) p_ran.append(dg / dg_ran) p = np.array(p) p_ran = np.array(p_ran) precision = np.abs(np.mean(p) - 1) precision_ran = np.abs(np.mean(p_ran) - 1) assert precision < 10 * scale assert precision < precision_ran
def test_Evaluation(reset_NodeDict): vx = np.array([1.0, 2.0, 3.0]).reshape(1, 3) vy = np.array([2.0, 3.0, 4.0]).reshape(3, 1) vz = np.array([3.0, 5.0, 7.0]).reshape(1, 3) x = Var('x') x.val = vx y = Var('y', vy) z = Var('z', vz) with pytest.raises(ValueError): Dot(x, Var('t', vy.T)).val xy = Mul(x, y) assert (unicode(xy) == 'x*y') assert_all(xy.val == vx.dot(vy)) x_plus_z = Add(x, z) assert (unicode(x_plus_z) == 'x+z') assert_all(x_plus_z.val == vx + vz) assert_all(CTimes(xy, z).val == CTimes(z, xy).val) assert_all(CTimes(xy, z).val == vx.dot(vy) * vz) s0 = 1.57 s = Var('s', s0) fs = VSF('cos', s, np.cos) assert (unicode(fs) == 'cos(s)') assert (fs.val == np.cos(s0))
def test_expressions_code_generation(): ran=lambda x : np.random.random(x)-0.5 x=Var('x',ran((1,4))) y=Var('y',ran((4,1))) a=Var('a',ran((5,1))) b=Var('b',ran((6,1))) D,C,B,A = Var('D', ran((4,4))), Var('C', ran((4,6))), Var('B', ran((6,5))), Var('A', ran((5,4))) ns={} f = Dot(Dot(x,C),Dot(B,VSF('sin',Add(Dot(A,y),a)))) assert f.code()=='np.dot(np.dot(x,C),np.dot(B,np.sin(np.add(np.dot(A,y),a))))' ns=Node.Compile('f',f, ns) assert ns['f'](A=A.val,B=B.val,C=C.val, a=a.val,x=x.val,y=y.val)==f.val g = Dot(Dot(x,C),VSF('sin',Add(Dot(B,VSF('sin',Add(Dot(A,y),a))),b))) assert g.code()=='np.dot(np.dot(x,C),np.sin(np.add(np.dot(B,np.sin(np.add(np.dot(A,y),a))),b)))' ns=Node.Compile('g',g, ns) assert ns['g'](A=A.val,B=B.val,C=C.val, a=a.val,b=b.val,x=x.val,y=y.val)==g.val h,w,b,u,w12 =Var('h'),Var('W'),Var('b'),Var('u'), Var('word12') phrase=VSF('tanh', Add(Dot(w, h), b)) score=Dot(u,phrase) assert phrase.code()=='np.tanh(np.add(np.dot(W,h),b))' assert score.code()=='np.dot(u,np.tanh(np.add(np.dot(W,h),b)))'
def _AccumulateSideExpression(left, right): if IsMatrix(left) or IsMatrix(right): return Dot(left, right).simplify() return CTimes(left, right).simplify()
def test_ReuseExistingExpressions(reset_NodeDict): ran = lambda x: np.random.random(x) - 0.5 x, y, a, b = Var('x'), Var('y'), Var('a'), Var('b') D, C, B, A = Var('D'), Var('C'), Var('B'), Var('A') x.val, y.val, a.val, b.val = ran((1, 4)), ran((4, 1)), ran((5, 1)), ran( (6, 1)) D.val, C.val, B.val, A.val = ran((4, 4)), ran((4, 6)), ran((6, 5)), ran( (5, 4)) xDy = Dot(x, Dot(D, y)) xDy.cache() assert Var('x') is xDy.x assert Dot(D, y).y is Var('y') assert Dot(D, y) is xDy.y xDy2 = Dot(Dot(x, D), y) tmp = Differentiation(xDy2, x) tmp2 = Differentiation(xDy2, x) assert tmp2 is not tmp tmp.cache() tmp2 = Differentiation(xDy2, x) assert tmp2 is tmp tmp3 = Differentiation(xDy, x) assert tmp3 is tmp f = Dot(Dot(x, C), Dot(B, VSF('sin', Add(Dot(A, y), a)))) f.cache() dfdy = Differentiation(f, y) dfdy2 = Differentiation(f, y) assert dfdy2 is not dfdy dfdy.cache() dfdy2 = Differentiation(f, y) assert dfdy2 is dfdy dfda = Differentiation(f, a) assert dfda.var is dfdy.var.x g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))), b))) g.cache() assert g.y.var.x is f.y dgdA = Differentiation(g, A) dgdA.cache() dgdB = Differentiation(g, B) print unicode(dgdB) assert dgdB.y.var is f.y.y assert dgdA.x.var.x.x is dgdB.x.var
def test_VectorAndMatrixVariables(reset_NodeDict): ran = lambda x: np.random.random(x) - 0.5 x = Var('x', ran((1, 4))) y = Var('y', ran((4, 1))) a = Var('a', ran((5, 1))) b = Var('b', ran((6, 1))) D, C, B, A = Var('D', ran((4, 4))), Var('C', ran( (4, 6))), Var('B', ran((6, 5))), Var('A', ran((5, 4))) assert (x.val.shape == (1, 4)) assert IsZero(Differentiation(Dot(x, y), D)) assert IsZero(Differentiation(Dot(x, y), a)) assert unicode(Differentiation(Dot(x, y), y)) == u'xᵀ' assert unicode(Differentiation(Dot(x, y), x)) == u'yᵀ' xDy = Dot(x, Dot(D, y)) assert unicode(xDy) == u'x⋅D⋅y' assert unicode(Differentiation(xDy, y)) == u'[x⋅D]ᵀ' assert unicode(Differentiation(xDy, x)) == u'[D⋅y]ᵀ' xDy = Dot(Dot(x, D), y) assert unicode(xDy) == u'x⋅D⋅y' assert unicode(Differentiation(xDy, y)) == u'[x⋅D]ᵀ' assert unicode(Differentiation(xDy, x)) == u'[D⋅y]ᵀ' xCBAy = Dot(x, Dot(C, Dot(B, Dot(A, y)))) assert unicode(xCBAy) == u'x⋅C⋅B⋅A⋅y' assert unicode(Differentiation(xCBAy, x)) == u'[C⋅B⋅A⋅y]ᵀ' assert unicode(Differentiation(xCBAy, y)) == u'[x⋅C⋅B⋅A]ᵀ' xCBAy = Dot(Dot(x, C), Dot(B, Dot(A, y))) assert unicode(xCBAy) == u'x⋅C⋅B⋅A⋅y' assert unicode(Differentiation(xCBAy, x)) == u'[C⋅B⋅A⋅y]ᵀ' assert unicode(Differentiation(xCBAy, y)) == u'[x⋅C⋅B⋅A]ᵀ' xfy = Dot(x, VSF('sin', y)) assert unicode(xfy) == u'x⋅sin(y)' assert unicode(Differentiation(xfy, y)) == u'[x⨯[cos(y)]ᵀ]ᵀ' f = Dot(Dot(x, C), Dot(B, VSF('sin', Add(Dot(A, y), a)))) assert unicode(f) == u'x⋅C⋅B⋅sin(A⋅y+a)' assert unicode(Differentiation(f, y)) == u'[x⋅C⋅B⨯[cos(A⋅y+a)]ᵀ⋅A]ᵀ' assert unicode(Differentiation(f, a)) == u'[x⋅C⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ' g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))), b))) assert unicode(g) == u'x⋅C⋅sin(B⋅sin(A⋅y+a)+b)' assert unicode(Differentiation(g, x)) == u'[C⋅sin(B⋅sin(A⋅y+a)+b)]ᵀ' assert unicode(Differentiation(g, b)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ]ᵀ' assert unicode(Differentiation( g, a)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ' assert unicode(Differentiation( g, y)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ⋅A]ᵀ' print unicode(Differentiation(g, A)) assert unicode(Differentiation( g, A)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ⨯yᵀ' assert unicode(Differentiation( g, B)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ]ᵀ⨯[sin(A⋅y+a)]ᵀ' assert unicode(Differentiation(g, C)) == u'xᵀ⨯[sin(B⋅sin(A⋅y+a)+b)]ᵀ' dgdx = Differentiation(g, x) dgdb = Differentiation(g, b) dgda = Differentiation(g, a) dgdy = Differentiation(g, y) delta = NormalizedMatrix(ran(x.val.shape), 0.01)
def test_Dot(): a = Var('A', ran((2, 3))) b = Var('b', ran((3, ))) ab = Dot(a, b) assert ab.val.shape == (2, ) assert ab.diff(b) == a