Пример #1
0
def _RNN():
    ran = lambda x: np.random.random(x) - 0.5
    phrase_expr = lambda W_mat, word_left, word_right, bias: VSF(
        'tanh', Add(Dot(W_mat, Concat(word_left, word_right)), bias))
    W = declareAndCache(u'W')
    W.val = ran((200, 400))
    bias = declareAndCache(u'b', )
    bias.val = ran((200, ))
    u_score = declareAndCache(u'u_score', )
    u_score.val = ran((200, ))
    assert Var(u'W') is W
    phrase_w1w2 = lambda w1, w2: phrase_expr(W, w1, w2, bias)

    w1 = declareAndCache(u'w1')
    w2 = declareAndCache(u'w2')
    w1.val, w2.val = ran(200), ran(200)
    score = lambda phrase: Dot(u_score, phrase)
    #score(phrase_w1w2(w1,w2)).diff(W)
    print unicode(phrase_w1w2(w1, w2).diff(W))
Пример #2
0
def test_GradientNumericalChecks(reset_NodeDict):
    ran = lambda x: np.random.random(x) - 0.5
    x, y, a, b = Var('x'), Var('y'), Var('a'), Var('b')
    D, C, B, A = Var('D'), Var('C'), Var('B'), Var('A')
    #g:= x⋅C⋅sin(B⋅sin(A⋅y+a)+b)
    g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))),
                                      b)))
    g.cache()

    #0.01 is may not small enough for g=x⋅C⋅sin(B⋅sin(A⋅y+a)+b).
    scale = 0.001
    for var in [B, A, y, a]:
        p = []
        p_ran = []
        for i in range(3):
            x.val, y.val, a.val, b.val = ran((1, 4)), ran((4, 1)), ran(
                (5, 1)), ran((6, 1))
            #D,C,B,A = Var('D', ran((4,4))), Var('C', ran((4,6))), Var('B', ran((6,5))), Var('A', ran((5,4)))
            D.val, C.val, B.val, A.val = ran((4, 4)), ran((4, 6)), ran(
                (6, 5)), ran((5, 4))
            gradient = Differentiation(g, var)
            gradient.cache()
            var0 = var.val
            delta = NormalizedMatrix(ran(var.val.shape), scale)
            rand_grad = gradient.val.copy()
            np.random.shuffle(rand_grad)
            rand_grad = NormalizedMatrix(ran(gradient.val.shape),
                                         gradient.val.sum())
            dg_ran = np.sum(delta * rand_grad)
            dg_grad = np.sum(delta * gradient.val)
            g0 = g.val
            var.val = var0 + delta
            g1 = g.val
            dg = g1 - g0
            p.append(dg / dg_grad)
            p_ran.append(dg / dg_ran)
        p = np.array(p)
        p_ran = np.array(p_ran)

        precision = np.abs(np.mean(p) - 1)
        precision_ran = np.abs(np.mean(p_ran) - 1)
        assert precision < 10 * scale
        assert precision < precision_ran
Пример #3
0
def test_Evaluation(reset_NodeDict):
    vx = np.array([1.0, 2.0, 3.0]).reshape(1, 3)
    vy = np.array([2.0, 3.0, 4.0]).reshape(3, 1)
    vz = np.array([3.0, 5.0, 7.0]).reshape(1, 3)
    x = Var('x')
    x.val = vx
    y = Var('y', vy)
    z = Var('z', vz)
    with pytest.raises(ValueError):
        Dot(x, Var('t', vy.T)).val
    xy = Mul(x, y)
    assert (unicode(xy) == 'x*y')
    assert_all(xy.val == vx.dot(vy))
    x_plus_z = Add(x, z)
    assert (unicode(x_plus_z) == 'x+z')
    assert_all(x_plus_z.val == vx + vz)
    assert_all(CTimes(xy, z).val == CTimes(z, xy).val)
    assert_all(CTimes(xy, z).val == vx.dot(vy) * vz)
    s0 = 1.57
    s = Var('s', s0)
    fs = VSF('cos', s, np.cos)
    assert (unicode(fs) == 'cos(s)')
    assert (fs.val == np.cos(s0))
Пример #4
0
def test_expressions_code_generation():
    ran=lambda x : np.random.random(x)-0.5
    x=Var('x',ran((1,4)))
    y=Var('y',ran((4,1)))
    a=Var('a',ran((5,1)))
    b=Var('b',ran((6,1)))
    D,C,B,A = Var('D', ran((4,4))), Var('C', ran((4,6))), Var('B', ran((6,5))), Var('A', ran((5,4)))

    ns={}
    f = Dot(Dot(x,C),Dot(B,VSF('sin',Add(Dot(A,y),a))))
    assert f.code()=='np.dot(np.dot(x,C),np.dot(B,np.sin(np.add(np.dot(A,y),a))))'
    ns=Node.Compile('f',f, ns)
    assert ns['f'](A=A.val,B=B.val,C=C.val, a=a.val,x=x.val,y=y.val)==f.val
    g = Dot(Dot(x,C),VSF('sin',Add(Dot(B,VSF('sin',Add(Dot(A,y),a))),b)))
    assert g.code()=='np.dot(np.dot(x,C),np.sin(np.add(np.dot(B,np.sin(np.add(np.dot(A,y),a))),b)))'
    ns=Node.Compile('g',g, ns)
    assert ns['g'](A=A.val,B=B.val,C=C.val, a=a.val,b=b.val,x=x.val,y=y.val)==g.val

    h,w,b,u,w12     =Var('h'),Var('W'),Var('b'),Var('u'), Var('word12')
    phrase=VSF('tanh', Add(Dot(w, h), b))
    score=Dot(u,phrase)
    assert phrase.code()=='np.tanh(np.add(np.dot(W,h),b))'
    assert score.code()=='np.dot(u,np.tanh(np.add(np.dot(W,h),b)))'
Пример #5
0
def _AccumulateSideExpression(left, right):
    if IsMatrix(left) or IsMatrix(right):
        return Dot(left, right).simplify()
    return CTimes(left, right).simplify()
Пример #6
0
def test_ReuseExistingExpressions(reset_NodeDict):
    ran = lambda x: np.random.random(x) - 0.5
    x, y, a, b = Var('x'), Var('y'), Var('a'), Var('b')
    D, C, B, A = Var('D'), Var('C'), Var('B'), Var('A')
    x.val, y.val, a.val, b.val = ran((1, 4)), ran((4, 1)), ran((5, 1)), ran(
        (6, 1))
    D.val, C.val, B.val, A.val = ran((4, 4)), ran((4, 6)), ran((6, 5)), ran(
        (5, 4))

    xDy = Dot(x, Dot(D, y))
    xDy.cache()
    assert Var('x') is xDy.x
    assert Dot(D, y).y is Var('y')
    assert Dot(D, y) is xDy.y
    xDy2 = Dot(Dot(x, D), y)
    tmp = Differentiation(xDy2, x)
    tmp2 = Differentiation(xDy2, x)
    assert tmp2 is not tmp
    tmp.cache()
    tmp2 = Differentiation(xDy2, x)
    assert tmp2 is tmp
    tmp3 = Differentiation(xDy, x)
    assert tmp3 is tmp

    f = Dot(Dot(x, C), Dot(B, VSF('sin', Add(Dot(A, y), a))))
    f.cache()
    dfdy = Differentiation(f, y)
    dfdy2 = Differentiation(f, y)
    assert dfdy2 is not dfdy
    dfdy.cache()
    dfdy2 = Differentiation(f, y)
    assert dfdy2 is dfdy
    dfda = Differentiation(f, a)
    assert dfda.var is dfdy.var.x

    g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))),
                                      b)))
    g.cache()
    assert g.y.var.x is f.y
    dgdA = Differentiation(g, A)
    dgdA.cache()
    dgdB = Differentiation(g, B)
    print unicode(dgdB)
    assert dgdB.y.var is f.y.y
    assert dgdA.x.var.x.x is dgdB.x.var
Пример #7
0
def test_VectorAndMatrixVariables(reset_NodeDict):
    ran = lambda x: np.random.random(x) - 0.5

    x = Var('x', ran((1, 4)))
    y = Var('y', ran((4, 1)))
    a = Var('a', ran((5, 1)))
    b = Var('b', ran((6, 1)))
    D, C, B, A = Var('D', ran((4, 4))), Var('C', ran(
        (4, 6))), Var('B', ran((6, 5))), Var('A', ran((5, 4)))

    assert (x.val.shape == (1, 4))
    assert IsZero(Differentiation(Dot(x, y), D))
    assert IsZero(Differentiation(Dot(x, y), a))
    assert unicode(Differentiation(Dot(x, y), y)) == u'xᵀ'
    assert unicode(Differentiation(Dot(x, y), x)) == u'yᵀ'

    xDy = Dot(x, Dot(D, y))
    assert unicode(xDy) == u'x⋅D⋅y'
    assert unicode(Differentiation(xDy, y)) == u'[x⋅D]ᵀ'
    assert unicode(Differentiation(xDy, x)) == u'[D⋅y]ᵀ'
    xDy = Dot(Dot(x, D), y)
    assert unicode(xDy) == u'x⋅D⋅y'
    assert unicode(Differentiation(xDy, y)) == u'[x⋅D]ᵀ'
    assert unicode(Differentiation(xDy, x)) == u'[D⋅y]ᵀ'

    xCBAy = Dot(x, Dot(C, Dot(B, Dot(A, y))))
    assert unicode(xCBAy) == u'x⋅C⋅B⋅A⋅y'
    assert unicode(Differentiation(xCBAy, x)) == u'[C⋅B⋅A⋅y]ᵀ'
    assert unicode(Differentiation(xCBAy, y)) == u'[x⋅C⋅B⋅A]ᵀ'
    xCBAy = Dot(Dot(x, C), Dot(B, Dot(A, y)))
    assert unicode(xCBAy) == u'x⋅C⋅B⋅A⋅y'
    assert unicode(Differentiation(xCBAy, x)) == u'[C⋅B⋅A⋅y]ᵀ'
    assert unicode(Differentiation(xCBAy, y)) == u'[x⋅C⋅B⋅A]ᵀ'

    xfy = Dot(x, VSF('sin', y))
    assert unicode(xfy) == u'x⋅sin(y)'
    assert unicode(Differentiation(xfy, y)) == u'[x⨯[cos(y)]ᵀ]ᵀ'

    f = Dot(Dot(x, C), Dot(B, VSF('sin', Add(Dot(A, y), a))))
    assert unicode(f) == u'x⋅C⋅B⋅sin(A⋅y+a)'
    assert unicode(Differentiation(f, y)) == u'[x⋅C⋅B⨯[cos(A⋅y+a)]ᵀ⋅A]ᵀ'
    assert unicode(Differentiation(f, a)) == u'[x⋅C⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ'

    g = Dot(Dot(x, C), VSF('sin', Add(Dot(B, VSF('sin', Add(Dot(A, y), a))),
                                      b)))
    assert unicode(g) == u'x⋅C⋅sin(B⋅sin(A⋅y+a)+b)'
    assert unicode(Differentiation(g, x)) == u'[C⋅sin(B⋅sin(A⋅y+a)+b)]ᵀ'
    assert unicode(Differentiation(g, b)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ]ᵀ'
    assert unicode(Differentiation(
        g, a)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ'
    assert unicode(Differentiation(
        g, y)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ⋅A]ᵀ'
    print unicode(Differentiation(g, A))
    assert unicode(Differentiation(
        g, A)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ⋅B⨯[cos(A⋅y+a)]ᵀ]ᵀ⨯yᵀ'
    assert unicode(Differentiation(
        g, B)) == u'[x⋅C⨯[cos(B⋅sin(A⋅y+a)+b)]ᵀ]ᵀ⨯[sin(A⋅y+a)]ᵀ'
    assert unicode(Differentiation(g, C)) == u'xᵀ⨯[sin(B⋅sin(A⋅y+a)+b)]ᵀ'

    dgdx = Differentiation(g, x)
    dgdb = Differentiation(g, b)
    dgda = Differentiation(g, a)
    dgdy = Differentiation(g, y)
    delta = NormalizedMatrix(ran(x.val.shape), 0.01)
Пример #8
0
def test_Dot():
    a = Var('A', ran((2, 3)))
    b = Var('b', ran((3, )))
    ab = Dot(a, b)
    assert ab.val.shape == (2, )
    assert ab.diff(b) == a