コード例 #1
0
  for g in optimizer.param_groups:
    g['lr'] = new_lr
  return new_lr



if __name__ == '__main__':
    use_cuda = len(sys.argv) > 1 and sys.argv[1] == 'cuda'
    num_epochs = 80
    # get cifar 10 data
    trainloader, testloader = get_dataset()
    benchmark, debug = False, True
    resnet = Resnet(n=2,dbg=debug)
    resnet.train()
    if use_cuda:
        resnet = resnet.cuda()
        for block in resnet.residual_blocks:
            block.cuda()
    current_lr = 1e-4
#     optimizer = optim.SGD(resnet.parameters(), lr=current_lr, weight_decay=0.0001, momentum=0.9)
    optimizer = optim.Adam(resnet.parameters(), lr=1e-4, weight_decay=0.0001)
    train_accs, test_accs = [], []
    gradient_norms = []
    def train_model():
      current_lr=1e-4
      stopping_threshold, current_count = 3, 0
      n_iters = 0
      for e in range(num_epochs):
        # modify learning rate at 
          for i, data in enumerate(trainloader, 0):
              x, y = data
コード例 #2
0
        
  
if __name__ == '__main__':

    transform = transforms.Compose([transforms.RandomResizedCrop(224),transforms.ToTensor() ,transforms.Normalize((0.5 , 0.5 , 0.5) , (0.5 , 0.5 , 0.5))])  
#    trainset = torchvision.datasets.CIFAR10(root = './data' , train = True , download = True , transform = transform)
#    trainloader = torch.utils.data.DataLoader(trainset , batch_size = 256 , shuffle = True , num_workers =2)    
    testset = torchvision.datasets.CIFAR10(root = './data' , train = False , download = True , transform = transform)
    testloader = torch.utils.data.DataLoader(testset , batch_size = 9 , shuffle = False , num_workers = 2)
#    classes = ('plane' , 'car' , 'bird' , 'cat' , 'deer' , 'dog' , 'frog' , 'horse' , 'ship' , 'truck')
    os.environ['CUDA_VISIBLE_DEVICES'] = "3"
#    
#    
    resnet = Resnet()
    device_ids=[0]
    resnet = resnet.cuda(device_ids[0])
    net=torch.nn.DataParallel(resnet,device_ids=device_ids)
#
    # read model
    print('===> Try load checkpoint')
    if os.path.isdir('checkpoint'):
        try:
            checkpoint = torch.load('./checkpoint/resnet_final.t7')
            net.load_state_dict(checkpoint['state'])        
            start_epoch = checkpoint['epoch']
            print('===> Load last checkpoint data')
        except FileNotFoundError:
            start_epoch = 0
            print('Can\'t found resnet_final.t7')
    else:
        start_epoch = 0