コード例 #1
0
  def build(self, hp):
    maxnorm = hp.Choice('maxnorm', values=self.hyperparam['maxnorm'])

    resnet_model = Resnet(input_shape=(self.seqlen, self.channels), norm_max=maxnorm)
    if self.pretrained_weights is not None:
      resnet_model.set_weights(self.pretrained_weights)
    inp = Input(shape=(self.seqlen, self.channels))
    enc_inp = resnet_model(inp)

    dense_units = hp.Int('preclassification', min_value = self.hyperparam['dense_units']['min'],\
                         max_value = self.hyperparam['dense_units']['max'], step = self.hyperparam['dense_units']['step'])
    dense_out = Dense(units = dense_units, activation='relu',
                 kernel_constraint=MaxNorm(maxnorm,axis=[0,1]),
                 bias_constraint=MaxNorm(maxnorm,axis=0),
                 kernel_initializer=glorot_uniform(seed=0))(enc_inp)
    dense_out = Dropout(rate=hp.Choice('dropout', values = self.hyperparam['dropout']))(dense_out)
    output = Dense(self.num_classes, activation='softmax',
                 kernel_constraint=MaxNorm(maxnorm,axis=[0,1]),
                 bias_constraint=MaxNorm(maxnorm,axis=0),
                 kernel_initializer=glorot_uniform(seed=0))(dense_out)
    model = Model(inputs=inp, outputs=output)

    model.compile(optimizer=Adam(lr=hp.Choice('lr', values = self.hyperparam['lr'])),
                  loss=focal_loss(), metrics=['accuracy', macro_f1])

    return model
コード例 #2
0
def main(argv):
    infile = argv[0]
    outfile = argv[1]

    seqlen = 1500
    channels = 6
    maxnorm = 20.0

    # Create model
    resnet_model = Resnet(input_shape=(seqlen, channels), norm_max=maxnorm)
    samp1 = Input(shape=(seqlen, channels))
    enc_samp1 = resnet_model(samp1)
    samp2 = Input(shape=(seqlen, channels))
    enc_samp2 = resnet_model(samp2)
    diff_layer = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1]))
    diff_enc = diff_layer([enc_samp1, enc_samp2])

    dense_out = Dense(50,
                      activation='relu',
                      kernel_constraint=MaxNorm(maxnorm, axis=[0, 1]),
                      bias_constraint=MaxNorm(maxnorm, axis=0),
                      kernel_initializer=glorot_uniform(seed=0))(diff_enc)
    dense_out = Dropout(rate=0.2)(dense_out)
    output = Dense(1,
                   activation='sigmoid',
                   kernel_constraint=MaxNorm(maxnorm, axis=[0, 1]),
                   bias_constraint=MaxNorm(maxnorm, axis=0),
                   kernel_initializer=glorot_uniform(seed=0))(dense_out)
    model = Model(inputs=[samp1, samp2], outputs=output)
    model.load_weights(infile)
    for layer in model.layers:
        if layer.name == "model":
            resnet_model.set_weights(layer.get_weights())
            resnet_model.save_weights(outfile)