def load_or_compute_classifier(self,train,test,mask=None): from rwsegment import boundary_utils reload(boundary_utils) #idir_prior = config.dir_prior_edges + test #if not os.path.isdir(dir_prior): # os.makedirs(dir_prior) ## Train classifier logger.info('train classifier with train {} for test {}'.format(train, test)) ##load image and seg im = io_analyze.load( config.dir_reg + test + train + 'reggray.hdr').astype(float) nim = im/np.std(im) seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr') seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) logger.debug('number of sampled points = {}'.format(len(points))) #impoints = np.zeros(im.shape,dtype=int) #impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## compute edges edges,edgev,labels = boundary_utils.get_edges(im, points, mask=mask) logger.debug('number of edges = {}'.format(len(edges))) ## extract profiles profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0) logger.debug('extracted profiles') ## make features x = boundary_utils.make_features(profiles, size=self.sizex, additional=[dists,edgev,edgev/dists]) logger.debug('features made, size = {}'.format(len(x[0]))) ## make annotations z = boundary_utils.is_boundary(points, edges, seg) logger.debug('annotations made') ## learn profiles logger.debug('training classifier') classifier = boundary_utils.Classifier() classifier.train(x,z) ## test classification logger.debug('testing classifier') cl, scores = classifier.classify(x) logger.info('non boundary correct rate: {:.3}'.format( np.sum((np.r_[cl]==0)&(np.r_[z]==0))/np.sum(np.r_[z]==0).astype(float))) logger.info('boundary correct rate: {:.3}'.format( np.sum((np.r_[cl]==1)&(np.r_[z]==1))/np.sum(np.r_[z]==1).astype(float))) ## store classifier #np.savetxt(dir_prior + 'classifier.txt', classifier.w) return classifier
def load_or_compute_orientations(self, train, test, mask=None): from rwsegment import boundary_utils reload(boundary_utils) ## Train classifier logger.info('train orientations with train {} for test {}'.format( train, test)) ##load image and seg seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr').astype(int) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## sample points points = boundary_utils.sample_points(np.ones(seg.shape), 5, mask=mask) logger.debug('number of sampled points = {}'.format(len(points))) ## find edges between muscles points_label = seg[tuple(points.T)] nlabel = len(self.labelset) hist = {} orient_scores = np.zeros((self.orients.shape[0], self.nlabel**2)) #orient_prior = np.ones((3,self.label_pairs.shape[0])) ipair = 0 for l1 in range(nlabel): label1 = self.labelset[l1] inds1 = np.where(points_label == label1)[0] hist[label1] = {} for l2 in range(nlabel): label2 = self.labelset[l2] inds2 = np.where(points_label == label2)[0] edges = np.argwhere( np.triu(np.ones((inds1.size, inds2.size)), k=1)) edges = np.c_[inds1[edges[:, 0]], inds2[edges[:, 1]]] vecs = points[edges[:, 1]] - points[edges[:, 0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2, axis=1))] if l1 == 0 or l1 == l2: avg = np.ones(len(self.orients)) / float(len(self.orients)) else: scores = self.get_orient_scores(vecs) avg = np.mean(scores, axis=0) avgvecs = np.mean(vecs, axis=0) hist[label1][label2] = avg orient_scores[:, ipair] = avg #orient_prior[:,ipair] = avgvecs #print self.label_pairs[ipair], avg ipair += 1 #orient_scores /= np.c_[np.sum(orient_scores,axis=1)] #import ipdb; ipdb.set_trace() return orient_scores, hist
def load_or_compute_orientations(self,train,test, mask=None): from rwsegment import boundary_utils reload(boundary_utils) ## Train classifier logger.info('train orientations with train {} for test {}'.format(train, test)) ##load image and seg seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr').astype(int) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## sample points points = boundary_utils.sample_points(np.ones(seg.shape), 5, mask=mask) logger.debug('number of sampled points = {}'.format(len(points))) ## find edges between muscles points_label = seg[tuple(points.T)] nlabel = len(self.labelset) hist = {} orient_scores = np.zeros((self.orients.shape[0],self.nlabel**2)) #orient_prior = np.ones((3,self.label_pairs.shape[0])) ipair = 0 for l1 in range(nlabel): label1 = self.labelset[l1] inds1 = np.where(points_label==label1)[0] hist[label1] = {} for l2 in range(nlabel): label2 = self.labelset[l2] inds2 = np.where(points_label==label2)[0] edges = np.argwhere(np.triu(np.ones((inds1.size, inds2.size)),k=1)) edges = np.c_[inds1[edges[:,0]], inds2[edges[:,1]]] vecs = points[edges[:,1]] - points[edges[:,0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2,axis=1))] if l1==0 or l1==l2: avg = np.ones(len(self.orients))/float(len(self.orients)) else: scores = self.get_orient_scores(vecs) avg = np.mean(scores,axis=0) avgvecs = np.mean(vecs,axis=0) hist[label1][label2] = avg orient_scores[:,ipair] = avg #orient_prior[:,ipair] = avgvecs #print self.label_pairs[ipair], avg ipair += 1 #orient_scores /= np.c_[np.sum(orient_scores,axis=1)] #import ipdb; ipdb.set_trace() return orient_scores,hist
def process_sample(self, train, test): outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) ## get prior from scipy import ndimage segtrain = io_analyze.load(config.dir_reg + test + train + '/regseg.hdr') segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0] struct = np.ones((10, ) * segtrain.ndim) mask = ndimage.binary_dilation( segtrain > 0, structure=struct, ).astype(bool) #prior, mask = load_or_compute_prior_and_mask( # test,force_recompute=self.force_recompute_prior) #mask = mask.astype(bool) ## load image file_name = config.dir_reg + test + 'gray.hdr' logger.info('segmenting data: {}'.format(file_name)) im = io_analyze.load(file_name).astype(float) file_gt = config.dir_reg + test + 'seg.hdr' seg = io_analyze.load(file_gt) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## normalize image nim = im / np.std(im) #orient_scores = self.load_or_compute_orientations(train,test, mask=mask) if 1: #not os.path.isfile(outdir + 'points.npy'): from rwsegment import boundary_utils reload(boundary_utils) ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) points = points[mask[tuple(points.T)]] impoints = np.zeros(im.shape, dtype=int) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ipoints = np.where(impoints.ravel())[0] points = np.argwhere(impoints) np.save(outdir + 'points.npy', points) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## set unary potentials from prior: array of unary costs nlabel = len(self.labelset) dist = self.distance_to_train(segtrain, points) T = 10.0 prob_pts = np.exp(-(dist / T)**2) / np.c_[np.sum( np.exp(-(dist / T)**2), axis=1)] #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))] #prob[mask.ravel(),:] = prior['data'].T #prob_pts = prob[ipoints,:] np.save(outdir + 'prob_points.npy', prob_pts) ## binary potentials ## compute edges edges, edgev, labels = boundary_utils.get_edges(im, points, mask=mask) edges = np.sort(edges, axis=1) np.save(outdir + 'edges.npy', edges) ## get orientation hist orient_scores, hist = self.load_or_compute_orientations(train, test, mask=mask) ##classify edges vecs = points[edges[:, 1]] - points[edges[:, 0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2, axis=1))] scores = self.get_orient_scores(vecs) prob_orient = np.dot(scores, orient_scores) #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)] np.save(outdir + 'prob_orient.npy', prob_orient) ''' ## load classifier classifier = self.load_or_compute_classifier(train,test, mask=mask) ## extract profiles profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0) ## make features x = boundary_utils.make_features( profiles, size=self.sizex, additional=[dists,edgev,edgev/dists], ) ## classify cl, scores = classifier.classify(x) ## ground truth z = boundary_utils.is_boundary(points, edges, seg) logger.info('non boundary classification: {}%'\ .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100)) logger.info('boundary classification: {}%'\ .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100)) np.save(outdir + 'classified.npy', cl) ## probabilities prob_edges = 1. - scores/np.c_[np.sum(scores, axis=1)] ##save probs np.save(outdir + 'prob_edges.npy',prob_edges) ''' else: points = np.load(outdir + 'points.npy') edges = np.load(outdir + 'edges.npy') cl = np.load(outdir + 'classified.npy') prob_pts = np.load(outdir + 'prob_points.npy') #prob_edges = np.load(outdir + 'prob_edges.npy') prob_orient = np.load(outdir + 'prob_orient.npy') ## make potentials unary = -np.log(prob_pts + 1e-10) #binary = - np.log(prob_edges + 1e-10) #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1] thresh = (len(self.orients) - 1.0) / len(self.orients) orient_cost = -np.log(np.clip(prob_orient + thresh, 0, 1) + 1e-10) * 100 orient_cost = np.clip(orient_cost, 0, 1e10) #import ipdb; ipdb.set_trace() ## solve MRF: import ipdb ipdb.set_trace() ''' from rwsegment.mrf import fastPD class CostFunction(object): def __init__(self,**kwargs): self.binary = kwargs.pop('binary',0) self.orient_indices = kwargs.pop('orient_indices') self.orient_cost = kwargs.pop('orient_cost') def __call__(self,e,l1,l2): idpair = self.orient_indices[l1,l2] pair_cost = self.orient_cost[e,idpair] cost = (l1!=l2)*pair_cost #return (l1!=l2)*(1-cl[e])*0.1 #return (l1!=l2)*self.binary[e,1]*0.1 #y = l1!=l2 #return self.binary[e, y]*pair_cost print e, l1, l2, cost return cost #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True) cost_function = CostFunction( #binary=binary, orient_indices=self.orient_indices, orient_cost=orient_cost, ) sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True) ''' wpairs = orient_cost from rwsegment.mrf import trw sol, en = trw.TRW_general(unary, edges, wpairs, niters=1000, verbose=True) labels = self.labelset[sol] imsol = np.ones(im.shape, dtype=np.int32) * 20 imsol[tuple(points.T)] = labels io_analyze.save(outdir + 'imseeds.hdr', imsol) ## classify sol gtlabels = seg[tuple(points.T)] priorlabels = self.labelset[np.argmin(unary, axis=1)] err_prior = 1 - np.sum(gtlabels == priorlabels) / float(len(points)) err = 1 - np.sum(gtlabels == labels) / float(len(points)) logger.info('error in prior sol: {}%'.format(err_prior * 100)) logger.info('error in sol: {}%'.format(err * 100)) import ipdb ipdb.set_trace() ## start segmenting sol, y = rwsegment.segment(nim, seeds=seeds, labelset=self.labelset, weight_function=self.weight_function, **self.params) ## compute Dice coefficient per label dice = compute_dice_coef(sol, seg, labelset=self.labelset) logger.info('Dice: {}'.format(dice)) if not config.debug: io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32)) np.savetxt(outdir + 'dice.txt', np.c_[dice.keys(), dice.values()], fmt='%d %.8f')
def load_or_compute_classifier(self, train, test, mask=None): from rwsegment import boundary_utils reload(boundary_utils) #idir_prior = config.dir_prior_edges + test #if not os.path.isdir(dir_prior): # os.makedirs(dir_prior) ## Train classifier logger.info('train classifier with train {} for test {}'.format( train, test)) ##load image and seg im = io_analyze.load(config.dir_reg + test + train + 'reggray.hdr').astype(float) nim = im / np.std(im) seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr') seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) logger.debug('number of sampled points = {}'.format(len(points))) #impoints = np.zeros(im.shape,dtype=int) #impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## compute edges edges, edgev, labels = boundary_utils.get_edges(im, points, mask=mask) logger.debug('number of edges = {}'.format(len(edges))) ## extract profiles profiles, emap, dists = boundary_utils.get_profiles(nim, points, edges, rad=0) logger.debug('extracted profiles') ## make features x = boundary_utils.make_features( profiles, size=self.sizex, additional=[dists, edgev, edgev / dists]) logger.debug('features made, size = {}'.format(len(x[0]))) ## make annotations z = boundary_utils.is_boundary(points, edges, seg) logger.debug('annotations made') ## learn profiles logger.debug('training classifier') classifier = boundary_utils.Classifier() classifier.train(x, z) ## test classification logger.debug('testing classifier') cl, scores = classifier.classify(x) logger.info('non boundary correct rate: {:.3}'.format( np.sum((np.r_[cl] == 0) & (np.r_[z] == 0)) / np.sum(np.r_[z] == 0).astype(float))) logger.info('boundary correct rate: {:.3}'.format( np.sum((np.r_[cl] == 1) & (np.r_[z] == 1)) / np.sum(np.r_[z] == 1).astype(float))) ## store classifier #np.savetxt(dir_prior + 'classifier.txt', classifier.w) return classifier
def process_sample(self,train, test): outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test logger.info('saving data in: {}'.format(outdir)) if not os.path.isdir(outdir): os.makedirs(outdir) ## get prior from scipy import ndimage segtrain = io_analyze.load(config.dir_reg + test + train + '/regseg.hdr') segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0] struct = np.ones((10,)*segtrain.ndim) mask = ndimage.binary_dilation( segtrain>0, structure=struct, ).astype(bool) #prior, mask = load_or_compute_prior_and_mask( # test,force_recompute=self.force_recompute_prior) #mask = mask.astype(bool) ## load image file_name = config.dir_reg + test + 'gray.hdr' logger.info('segmenting data: {}'.format(file_name)) im = io_analyze.load(file_name).astype(float) file_gt = config.dir_reg + test + 'seg.hdr' seg = io_analyze.load(file_gt) seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0] ## normalize image nim = im/np.std(im) #orient_scores = self.load_or_compute_orientations(train,test, mask=mask) if 1:#not os.path.isfile(outdir + 'points.npy'): from rwsegment import boundary_utils reload(boundary_utils) ## sample points points = boundary_utils.sample_points(im, self.step, mask=mask) points = points[mask[tuple(points.T)]] impoints = np.zeros(im.shape,dtype=int) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ipoints = np.where(impoints.ravel())[0] points = np.argwhere(impoints) np.save(outdir + 'points.npy', points) impoints[tuple(points.T)] = np.arange(len(points)) + 1 ## set unary potentials from prior: array of unary costs nlabel = len(self.labelset) dist = self.distance_to_train(segtrain, points) T = 10.0 prob_pts = np.exp(-(dist/T)**2) / np.c_[np.sum(np.exp(-(dist/T)**2),axis=1)] #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))] #prob[mask.ravel(),:] = prior['data'].T #prob_pts = prob[ipoints,:] np.save(outdir + 'prob_points.npy', prob_pts) ## binary potentials ## compute edges edges,edgev,labels = boundary_utils.get_edges(im, points, mask=mask) edges = np.sort(edges,axis=1) np.save(outdir + 'edges.npy', edges) ## get orientation hist orient_scores,hist = self.load_or_compute_orientations(train,test, mask=mask) ##classify edges vecs = points[edges[:,1]] - points[edges[:,0]] vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2,axis=1))] scores = self.get_orient_scores(vecs) prob_orient = np.dot(scores, orient_scores) #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)] np.save(outdir + 'prob_orient.npy', prob_orient) ''' ## load classifier classifier = self.load_or_compute_classifier(train,test, mask=mask) ## extract profiles profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0) ## make features x = boundary_utils.make_features( profiles, size=self.sizex, additional=[dists,edgev,edgev/dists], ) ## classify cl, scores = classifier.classify(x) ## ground truth z = boundary_utils.is_boundary(points, edges, seg) logger.info('non boundary classification: {}%'\ .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100)) logger.info('boundary classification: {}%'\ .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100)) np.save(outdir + 'classified.npy', cl) ## probabilities prob_edges = 1. - scores/np.c_[np.sum(scores, axis=1)] ##save probs np.save(outdir + 'prob_edges.npy',prob_edges) ''' else: points = np.load(outdir + 'points.npy') edges = np.load(outdir + 'edges.npy') cl = np.load(outdir + 'classified.npy') prob_pts = np.load(outdir + 'prob_points.npy') #prob_edges = np.load(outdir + 'prob_edges.npy') prob_orient = np.load(outdir + 'prob_orient.npy') ## make potentials unary = - np.log(prob_pts + 1e-10) #binary = - np.log(prob_edges + 1e-10) #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1] thresh = (len(self.orients) - 1.0) / len(self.orients) orient_cost = - np.log(np.clip(prob_orient + thresh,0,1) + 1e-10)*100 orient_cost = np.clip(orient_cost, 0, 1e10) #import ipdb; ipdb.set_trace() ## solve MRF: import ipdb; ipdb.set_trace() ''' from rwsegment.mrf import fastPD class CostFunction(object): def __init__(self,**kwargs): self.binary = kwargs.pop('binary',0) self.orient_indices = kwargs.pop('orient_indices') self.orient_cost = kwargs.pop('orient_cost') def __call__(self,e,l1,l2): idpair = self.orient_indices[l1,l2] pair_cost = self.orient_cost[e,idpair] cost = (l1!=l2)*pair_cost #return (l1!=l2)*(1-cl[e])*0.1 #return (l1!=l2)*self.binary[e,1]*0.1 #y = l1!=l2 #return self.binary[e, y]*pair_cost print e, l1, l2, cost return cost #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True) cost_function = CostFunction( #binary=binary, orient_indices=self.orient_indices, orient_cost=orient_cost, ) sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True) ''' wpairs = orient_cost from rwsegment.mrf import trw sol, en = trw.TRW_general( unary, edges, wpairs, niters=1000, verbose=True) labels = self.labelset[sol] imsol = np.ones(im.shape, dtype=np.int32)*20 imsol[tuple(points.T)] = labels io_analyze.save(outdir + 'imseeds.hdr', imsol) ## classify sol gtlabels = seg[tuple(points.T)] priorlabels = self.labelset[np.argmin(unary,axis=1)] err_prior = 1 - np.sum(gtlabels==priorlabels)/float(len(points)) err = 1 - np.sum(gtlabels==labels)/float(len(points)) logger.info('error in prior sol: {}%'.format(err_prior*100)) logger.info('error in sol: {}%'.format(err*100)) import ipdb; ipdb.set_trace() ## start segmenting sol,y = rwsegment.segment( nim, seeds=seeds, labelset=self.labelset, weight_function=self.weight_function, **self.params ) ## compute Dice coefficient per label dice = compute_dice_coef(sol, seg,labelset=self.labelset) logger.info('Dice: {}'.format(dice)) if not config.debug: io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32)) np.savetxt( outdir + 'dice.txt', np.c_[dice.keys(),dice.values()],fmt='%d %.8f')