コード例 #1
0
    def load_or_compute_classifier(self,train,test,mask=None):
        from rwsegment import boundary_utils
        reload(boundary_utils)

        #idir_prior = config.dir_prior_edges + test
        #if not os.path.isdir(dir_prior):
        #    os.makedirs(dir_prior)
 
        ## Train classifier
        logger.info('train classifier with train {} for test {}'.format(train, test))

        ##load image and seg
        im = io_analyze.load(
            config.dir_reg + test + train + 'reggray.hdr').astype(float)
        nim = im/np.std(im)
        seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr')
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]
        
        ## sample points
        points = boundary_utils.sample_points(im, self.step,  mask=mask)
        logger.debug('number of sampled points = {}'.format(len(points)))

        #impoints = np.zeros(im.shape,dtype=int)
        #impoints[tuple(points.T)] = np.arange(len(points)) + 1

        ## compute edges
        edges,edgev,labels = boundary_utils.get_edges(im, points,  mask=mask)
        logger.debug('number of edges = {}'.format(len(edges)))

        ## extract profiles
        profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0)
        logger.debug('extracted profiles')

        ## make features
        x = boundary_utils.make_features(profiles, size=self.sizex, additional=[dists,edgev,edgev/dists])
        logger.debug('features made, size = {}'.format(len(x[0])))

        ## make annotations
        z = boundary_utils.is_boundary(points, edges, seg)
        logger.debug('annotations made')
        

        ## learn profiles
        logger.debug('training classifier')
        classifier = boundary_utils.Classifier()
        classifier.train(x,z)
        
        ## test classification
        logger.debug('testing classifier')
        cl, scores = classifier.classify(x)

        logger.info('non boundary correct rate: {:.3}'.format( 
            np.sum((np.r_[cl]==0)&(np.r_[z]==0))/np.sum(np.r_[z]==0).astype(float)))
        logger.info('boundary correct rate: {:.3}'.format( 
            np.sum((np.r_[cl]==1)&(np.r_[z]==1))/np.sum(np.r_[z]==1).astype(float)))
        

        ## store classifier
        #np.savetxt(dir_prior + 'classifier.txt', classifier.w)
        return classifier    
コード例 #2
0
    def load_or_compute_orientations(self, train, test, mask=None):
        from rwsegment import boundary_utils
        reload(boundary_utils)

        ## Train classifier
        logger.info('train orientations with train {} for test {}'.format(
            train, test))

        ##load image and seg
        seg = io_analyze.load(config.dir_reg + test + train +
                              'regseg.hdr').astype(int)
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]

        ## sample points
        points = boundary_utils.sample_points(np.ones(seg.shape), 5, mask=mask)
        logger.debug('number of sampled points = {}'.format(len(points)))

        ## find edges between muscles
        points_label = seg[tuple(points.T)]
        nlabel = len(self.labelset)
        hist = {}
        orient_scores = np.zeros((self.orients.shape[0], self.nlabel**2))
        #orient_prior = np.ones((3,self.label_pairs.shape[0]))
        ipair = 0
        for l1 in range(nlabel):
            label1 = self.labelset[l1]
            inds1 = np.where(points_label == label1)[0]
            hist[label1] = {}
            for l2 in range(nlabel):
                label2 = self.labelset[l2]
                inds2 = np.where(points_label == label2)[0]
                edges = np.argwhere(
                    np.triu(np.ones((inds1.size, inds2.size)), k=1))
                edges = np.c_[inds1[edges[:, 0]], inds2[edges[:, 1]]]
                vecs = points[edges[:, 1]] - points[edges[:, 0]]
                vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2, axis=1))]
                if l1 == 0 or l1 == l2:
                    avg = np.ones(len(self.orients)) / float(len(self.orients))
                else:
                    scores = self.get_orient_scores(vecs)
                    avg = np.mean(scores, axis=0)
                avgvecs = np.mean(vecs, axis=0)

                hist[label1][label2] = avg
                orient_scores[:, ipair] = avg
                #orient_prior[:,ipair] = avgvecs
                #print self.label_pairs[ipair], avg
                ipair += 1

        #orient_scores /= np.c_[np.sum(orient_scores,axis=1)]
        #import ipdb; ipdb.set_trace()
        return orient_scores, hist
コード例 #3
0
    def load_or_compute_orientations(self,train,test, mask=None):
        from rwsegment import boundary_utils
        reload(boundary_utils)

        ## Train classifier
        logger.info('train orientations with train {} for test {}'.format(train, test))

        ##load image and seg
        seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr').astype(int)
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]
        
        ## sample points
        points = boundary_utils.sample_points(np.ones(seg.shape), 5,  mask=mask)
        logger.debug('number of sampled points = {}'.format(len(points)))


        ## find edges between muscles
        points_label = seg[tuple(points.T)]
        nlabel = len(self.labelset)
        hist = {}
        orient_scores = np.zeros((self.orients.shape[0],self.nlabel**2))
        #orient_prior = np.ones((3,self.label_pairs.shape[0]))
        ipair = 0
        for l1 in range(nlabel):
            label1 = self.labelset[l1]
            inds1 = np.where(points_label==label1)[0]
            hist[label1] = {}
            for l2 in range(nlabel):
                label2  = self.labelset[l2]
                inds2   = np.where(points_label==label2)[0]
                edges   = np.argwhere(np.triu(np.ones((inds1.size, inds2.size)),k=1))
                edges   = np.c_[inds1[edges[:,0]], inds2[edges[:,1]]]
                vecs    = points[edges[:,1]] - points[edges[:,0]]
                vecs    = vecs / np.c_[np.sqrt(np.sum(vecs**2,axis=1))]
                if l1==0 or l1==l2:
                    avg = np.ones(len(self.orients))/float(len(self.orients))
                else:
                    scores  = self.get_orient_scores(vecs)
                    avg     = np.mean(scores,axis=0)
                avgvecs = np.mean(vecs,axis=0)
                
                hist[label1][label2] = avg
                orient_scores[:,ipair] = avg
                #orient_prior[:,ipair] = avgvecs
                #print self.label_pairs[ipair], avg
                ipair += 1
                

        #orient_scores /= np.c_[np.sum(orient_scores,axis=1)]
        #import ipdb; ipdb.set_trace()
        return orient_scores,hist
コード例 #4
0
    def process_sample(self, train, test):
        outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test
        logger.info('saving data in: {}'.format(outdir))
        if not os.path.isdir(outdir):
            os.makedirs(outdir)

        ## get prior
        from scipy import ndimage
        segtrain = io_analyze.load(config.dir_reg + test + train +
                                   '/regseg.hdr')
        segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0]
        struct = np.ones((10, ) * segtrain.ndim)
        mask = ndimage.binary_dilation(
            segtrain > 0,
            structure=struct,
        ).astype(bool)

        #prior, mask = load_or_compute_prior_and_mask(
        #    test,force_recompute=self.force_recompute_prior)
        #mask = mask.astype(bool)

        ## load image
        file_name = config.dir_reg + test + 'gray.hdr'
        logger.info('segmenting data: {}'.format(file_name))
        im = io_analyze.load(file_name).astype(float)
        file_gt = config.dir_reg + test + 'seg.hdr'
        seg = io_analyze.load(file_gt)
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]

        ## normalize image
        nim = im / np.std(im)

        #orient_scores = self.load_or_compute_orientations(train,test, mask=mask)

        if 1:  #not os.path.isfile(outdir + 'points.npy'):

            from rwsegment import boundary_utils
            reload(boundary_utils)
            ## sample points
            points = boundary_utils.sample_points(im, self.step, mask=mask)
            points = points[mask[tuple(points.T)]]
            impoints = np.zeros(im.shape, dtype=int)
            impoints[tuple(points.T)] = np.arange(len(points)) + 1
            ipoints = np.where(impoints.ravel())[0]
            points = np.argwhere(impoints)
            np.save(outdir + 'points.npy', points)
            impoints[tuple(points.T)] = np.arange(len(points)) + 1

            ## set unary potentials from prior: array of unary costs
            nlabel = len(self.labelset)
            dist = self.distance_to_train(segtrain, points)
            T = 10.0
            prob_pts = np.exp(-(dist / T)**2) / np.c_[np.sum(
                np.exp(-(dist / T)**2), axis=1)]
            #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))]
            #prob[mask.ravel(),:] = prior['data'].T
            #prob_pts = prob[ipoints,:]
            np.save(outdir + 'prob_points.npy', prob_pts)

            ## binary potentials
            ## compute edges
            edges, edgev, labels = boundary_utils.get_edges(im,
                                                            points,
                                                            mask=mask)
            edges = np.sort(edges, axis=1)
            np.save(outdir + 'edges.npy', edges)

            ## get orientation hist
            orient_scores, hist = self.load_or_compute_orientations(train,
                                                                    test,
                                                                    mask=mask)

            ##classify edges
            vecs = points[edges[:, 1]] - points[edges[:, 0]]
            vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2, axis=1))]
            scores = self.get_orient_scores(vecs)
            prob_orient = np.dot(scores, orient_scores)
            #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)]
            np.save(outdir + 'prob_orient.npy', prob_orient)
            ''' 
            ## load classifier
            classifier = self.load_or_compute_classifier(train,test, mask=mask)
 
            ## extract profiles
            profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0)
   
            ## make features  
            x = boundary_utils.make_features(
                profiles, 
                size=self.sizex, 
                additional=[dists,edgev,edgev/dists],
                )
            
            ## classify
            cl, scores = classifier.classify(x)

            ## ground truth
            z = boundary_utils.is_boundary(points, edges, seg)

            logger.info('non boundary classification: {}%'\
                .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100))
            logger.info('boundary classification: {}%'\
                .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100))
            np.save(outdir + 'classified.npy', cl) 

            ## probabilities
            prob_edges = 1.  - scores/np.c_[np.sum(scores, axis=1)]
      
            ##save probs
            np.save(outdir + 'prob_edges.npy',prob_edges)
            '''
        else:
            points = np.load(outdir + 'points.npy')
            edges = np.load(outdir + 'edges.npy')
            cl = np.load(outdir + 'classified.npy')
            prob_pts = np.load(outdir + 'prob_points.npy')
            #prob_edges = np.load(outdir + 'prob_edges.npy')
            prob_orient = np.load(outdir + 'prob_orient.npy')

        ## make potentials
        unary = -np.log(prob_pts + 1e-10)
        #binary = - np.log(prob_edges + 1e-10)
        #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1]
        thresh = (len(self.orients) - 1.0) / len(self.orients)
        orient_cost = -np.log(np.clip(prob_orient + thresh, 0, 1) +
                              1e-10) * 100
        orient_cost = np.clip(orient_cost, 0, 1e10)
        #import ipdb; ipdb.set_trace()

        ## solve MRF:
        import ipdb
        ipdb.set_trace()
        '''
        from rwsegment.mrf import fastPD
        class CostFunction(object):
            def __init__(self,**kwargs):
                self.binary = kwargs.pop('binary',0)
                self.orient_indices = kwargs.pop('orient_indices')
                self.orient_cost = kwargs.pop('orient_cost')

            def __call__(self,e,l1,l2):
                idpair = self.orient_indices[l1,l2]
                pair_cost = self.orient_cost[e,idpair]
                cost = (l1!=l2)*pair_cost
                #return (l1!=l2)*(1-cl[e])*0.1
                #return (l1!=l2)*self.binary[e,1]*0.1
                #y = l1!=l2
                #return self.binary[e, y]*pair_cost
                print e, l1, l2, cost
                return cost
 
        #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True)  
        cost_function = CostFunction(
            #binary=binary,
            orient_indices=self.orient_indices,
            orient_cost=orient_cost,
            )
        sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True)  
        '''
        wpairs = orient_cost
        from rwsegment.mrf import trw
        sol, en = trw.TRW_general(unary,
                                  edges,
                                  wpairs,
                                  niters=1000,
                                  verbose=True)

        labels = self.labelset[sol]
        imsol = np.ones(im.shape, dtype=np.int32) * 20
        imsol[tuple(points.T)] = labels
        io_analyze.save(outdir + 'imseeds.hdr', imsol)

        ## classify sol
        gtlabels = seg[tuple(points.T)]
        priorlabels = self.labelset[np.argmin(unary, axis=1)]

        err_prior = 1 - np.sum(gtlabels == priorlabels) / float(len(points))
        err = 1 - np.sum(gtlabels == labels) / float(len(points))

        logger.info('error in prior sol: {}%'.format(err_prior * 100))
        logger.info('error in sol: {}%'.format(err * 100))

        import ipdb
        ipdb.set_trace()

        ## start segmenting
        sol, y = rwsegment.segment(nim,
                                   seeds=seeds,
                                   labelset=self.labelset,
                                   weight_function=self.weight_function,
                                   **self.params)

        ## compute Dice coefficient per label
        dice = compute_dice_coef(sol, seg, labelset=self.labelset)
        logger.info('Dice: {}'.format(dice))

        if not config.debug:
            io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32))
            np.savetxt(outdir + 'dice.txt',
                       np.c_[dice.keys(), dice.values()],
                       fmt='%d %.8f')
コード例 #5
0
    def load_or_compute_classifier(self, train, test, mask=None):
        from rwsegment import boundary_utils
        reload(boundary_utils)

        #idir_prior = config.dir_prior_edges + test
        #if not os.path.isdir(dir_prior):
        #    os.makedirs(dir_prior)

        ## Train classifier
        logger.info('train classifier with train {} for test {}'.format(
            train, test))

        ##load image and seg
        im = io_analyze.load(config.dir_reg + test + train +
                             'reggray.hdr').astype(float)
        nim = im / np.std(im)
        seg = io_analyze.load(config.dir_reg + test + train + 'regseg.hdr')
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]

        ## sample points
        points = boundary_utils.sample_points(im, self.step, mask=mask)
        logger.debug('number of sampled points = {}'.format(len(points)))

        #impoints = np.zeros(im.shape,dtype=int)
        #impoints[tuple(points.T)] = np.arange(len(points)) + 1

        ## compute edges
        edges, edgev, labels = boundary_utils.get_edges(im, points, mask=mask)
        logger.debug('number of edges = {}'.format(len(edges)))

        ## extract profiles
        profiles, emap, dists = boundary_utils.get_profiles(nim,
                                                            points,
                                                            edges,
                                                            rad=0)
        logger.debug('extracted profiles')

        ## make features
        x = boundary_utils.make_features(
            profiles,
            size=self.sizex,
            additional=[dists, edgev, edgev / dists])
        logger.debug('features made, size = {}'.format(len(x[0])))

        ## make annotations
        z = boundary_utils.is_boundary(points, edges, seg)
        logger.debug('annotations made')

        ## learn profiles
        logger.debug('training classifier')
        classifier = boundary_utils.Classifier()
        classifier.train(x, z)

        ## test classification
        logger.debug('testing classifier')
        cl, scores = classifier.classify(x)

        logger.info('non boundary correct rate: {:.3}'.format(
            np.sum((np.r_[cl] == 0) & (np.r_[z] == 0)) /
            np.sum(np.r_[z] == 0).astype(float)))
        logger.info('boundary correct rate: {:.3}'.format(
            np.sum((np.r_[cl] == 1) & (np.r_[z] == 1)) /
            np.sum(np.r_[z] == 1).astype(float)))

        ## store classifier
        #np.savetxt(dir_prior + 'classifier.txt', classifier.w)
        return classifier
コード例 #6
0
    def process_sample(self,train, test):
        outdir = config.dir_work + 'autoseeds/' + config.basis + '/' + train + '/' + test
        logger.info('saving data in: {}'.format(outdir))
        if not os.path.isdir(outdir):
            os.makedirs(outdir)
        
        ## get prior
        from scipy import ndimage
        segtrain = io_analyze.load(config.dir_reg + test + train + '/regseg.hdr')
        segtrain.flat[~np.in1d(segtrain, self.labelset)] = self.labelset[0]
        struct  = np.ones((10,)*segtrain.ndim)
        mask    = ndimage.binary_dilation(
                segtrain>0,
                structure=struct,
                ).astype(bool)
 
        #prior, mask = load_or_compute_prior_and_mask(
        #    test,force_recompute=self.force_recompute_prior)
        #mask = mask.astype(bool)

        ## load image
        file_name = config.dir_reg + test + 'gray.hdr'        
        logger.info('segmenting data: {}'.format(file_name))
        im      = io_analyze.load(file_name).astype(float)
        file_gt = config.dir_reg + test + 'seg.hdr'
        seg     = io_analyze.load(file_gt)
        seg.flat[~np.in1d(seg, self.labelset)] = self.labelset[0]
        
           
        ## normalize image
        nim = im/np.std(im)
     

        #orient_scores = self.load_or_compute_orientations(train,test, mask=mask)
 
        if 1:#not os.path.isfile(outdir + 'points.npy'):
  
            from rwsegment import boundary_utils
            reload(boundary_utils)
            ## sample points
            points = boundary_utils.sample_points(im, self.step,  mask=mask)
            points = points[mask[tuple(points.T)]]
            impoints = np.zeros(im.shape,dtype=int)
            impoints[tuple(points.T)] = np.arange(len(points)) + 1
            ipoints = np.where(impoints.ravel())[0]
            points = np.argwhere(impoints) 
            np.save(outdir + 'points.npy', points)
            impoints[tuple(points.T)] = np.arange(len(points)) + 1

            ## set unary potentials from prior: array of unary costs
            nlabel = len(self.labelset)
            dist = self.distance_to_train(segtrain, points)
            T = 10.0
            prob_pts = np.exp(-(dist/T)**2) / np.c_[np.sum(np.exp(-(dist/T)**2),axis=1)]
            #prob = np.c_[np.ones(im.size), np.zeros((im.size, nlabel-1))]
            #prob[mask.ravel(),:] = prior['data'].T
            #prob_pts = prob[ipoints,:]
            np.save(outdir + 'prob_points.npy', prob_pts) 
    
            ## binary potentials
            ## compute edges
            edges,edgev,labels = boundary_utils.get_edges(im, points,  mask=mask)
            edges = np.sort(edges,axis=1)
            np.save(outdir + 'edges.npy', edges)

            ## get orientation hist
            orient_scores,hist = self.load_or_compute_orientations(train,test, mask=mask)

            ##classify edges
            vecs = points[edges[:,1]] - points[edges[:,0]]
            vecs = vecs / np.c_[np.sqrt(np.sum(vecs**2,axis=1))] 
            scores = self.get_orient_scores(vecs)
            prob_orient = np.dot(scores, orient_scores)
            #prob_orient = prob_orient/np.c_[np.sum(prob_orient, axis=1)]
            np.save(outdir + 'prob_orient.npy', prob_orient) 

            ''' 
            ## load classifier
            classifier = self.load_or_compute_classifier(train,test, mask=mask)
 
            ## extract profiles
            profiles,emap,dists = boundary_utils.get_profiles(nim, points, edges, rad=0)
   
            ## make features  
            x = boundary_utils.make_features(
                profiles, 
                size=self.sizex, 
                additional=[dists,edgev,edgev/dists],
                )
            
            ## classify
            cl, scores = classifier.classify(x)

            ## ground truth
            z = boundary_utils.is_boundary(points, edges, seg)

            logger.info('non boundary classification: {}%'\
                .format(np.sum((np.r_[z]==0)*(np.r_[cl]==0))/float(np.sum(np.r_[z]==0))*100))
            logger.info('boundary classification: {}%'\
                .format(np.sum((np.r_[z]==1)*(np.r_[cl]==1))/float(np.sum(np.r_[z]==1))*100))
            np.save(outdir + 'classified.npy', cl) 

            ## probabilities
            prob_edges = 1.  - scores/np.c_[np.sum(scores, axis=1)]
      
            ##save probs
            np.save(outdir + 'prob_edges.npy',prob_edges)
            '''
        else:
            points     = np.load(outdir + 'points.npy')
            edges      = np.load(outdir + 'edges.npy')
            cl         = np.load(outdir + 'classified.npy') 
            prob_pts   = np.load(outdir + 'prob_points.npy')
            #prob_edges = np.load(outdir + 'prob_edges.npy')
            prob_orient = np.load(outdir + 'prob_orient.npy') 

        ## make potentials
        unary  = - np.log(prob_pts + 1e-10)
        #binary = - np.log(prob_edges + 1e-10)
        #thresh = (prob_orient.shape[1] - 1.0)/prob_orient.shape[1]
        thresh = (len(self.orients) - 1.0) / len(self.orients)
        orient_cost = - np.log(np.clip(prob_orient + thresh,0,1) + 1e-10)*100
        orient_cost = np.clip(orient_cost, 0, 1e10)
        #import ipdb; ipdb.set_trace()

        ## solve MRF:
        import ipdb; ipdb.set_trace()
        '''
        from rwsegment.mrf import fastPD
        class CostFunction(object):
            def __init__(self,**kwargs):
                self.binary = kwargs.pop('binary',0)
                self.orient_indices = kwargs.pop('orient_indices')
                self.orient_cost = kwargs.pop('orient_cost')

            def __call__(self,e,l1,l2):
                idpair = self.orient_indices[l1,l2]
                pair_cost = self.orient_cost[e,idpair]
                cost = (l1!=l2)*pair_cost
                #return (l1!=l2)*(1-cl[e])*0.1
                #return (l1!=l2)*self.binary[e,1]*0.1
                #y = l1!=l2
                #return self.binary[e, y]*pair_cost
                print e, l1, l2, cost
                return cost
 
        #sol, en = fastPD.fastPD_callback(unary, edges, cost_function(binary), debug=True)  
        cost_function = CostFunction(
            #binary=binary,
            orient_indices=self.orient_indices,
            orient_cost=orient_cost,
            )
        sol, en = fastPD.fastPD_callback(unary, edges, cost_function, debug=True)  
        '''
        wpairs = orient_cost
        from rwsegment.mrf import trw
        sol, en = trw.TRW_general(
            unary, edges, wpairs, niters=1000, verbose=True)

        labels = self.labelset[sol]
        imsol = np.ones(im.shape, dtype=np.int32)*20
        imsol[tuple(points.T)] = labels
        io_analyze.save(outdir + 'imseeds.hdr', imsol)

        ## classify sol
        gtlabels    = seg[tuple(points.T)]
        priorlabels = self.labelset[np.argmin(unary,axis=1)]

        err_prior = 1 - np.sum(gtlabels==priorlabels)/float(len(points))
        err       = 1 - np.sum(gtlabels==labels)/float(len(points))

        logger.info('error in prior sol: {}%'.format(err_prior*100))
        logger.info('error in sol: {}%'.format(err*100))

        import ipdb; ipdb.set_trace()

        ## start segmenting
        sol,y = rwsegment.segment(
            nim, 
            seeds=seeds, 
            labelset=self.labelset, 
            weight_function=self.weight_function,
            **self.params
            )

       
        ## compute Dice coefficient per label
        dice    = compute_dice_coef(sol, seg,labelset=self.labelset)
        logger.info('Dice: {}'.format(dice))
        
        if not config.debug:
            io_analyze.save(outdir + 'sol.hdr', sol.astype(np.int32))
            np.savetxt(
                outdir + 'dice.txt', np.c_[dice.keys(),dice.values()],fmt='%d %.8f')