コード例 #1
0
    def __call__(self, x=None, order=unk):
        cls = self._element_class
        BR = self.base_ring()
        
        if x is None:
            res = cls(self, stream=None, order=unk, aorder=unk,
                      aorder_changed=True, is_initialized=False)
            res.compute_aorder = uninitialized
            return res

        #Must be changed because inheritance
        #Useless for the moment
        # if isinstance(x, LazyPowerSeries):
        #     x_parent = x.parent()
        #     if x_parent.__class__ != self.__class__:
        #         raise ValueError
            
        #     if x_parent.base_ring() == self.base_ring():
        #         return x
        #     else:
        #         if self.base_ring().has_coerce_map_from(x_parent.base_ring()):
        #             return x._new(partial(x._change_ring_gen, self.base_ring()), lambda ao: ao, x, parent=self)
        

        if hasattr(x, "parent") and BR.has_coerce_map_from(x.parent()):
            x = BR(x)
            return self.term(x, [0]*self._ngens)
        

        if hasattr(x, "__iter__") and not isinstance(x, Stream_class):
            x = iter(x)

        if is_iterator(x):
            x = Stream(x)

        if isinstance(x, Stream_class):
            aorder = order if order != unk else 0
            return cls(self, stream=x, order=order, aorder=aorder,
                       aorder_changed=False, is_initialized=True)

        elif not hasattr(x, "parent"):
            x = BR(x)
            return self.term(x, [0]*self._ngens)
            
        raise TypeError, "do not know how to coerce %s into self"%x
コード例 #2
0
ファイル: series.py プロジェクト: zanecolgin/sagesmc
    def __call__(self, x=None, order=unk):
        """
        EXAMPLES::

            sage: from sage.combinat.species.stream import Stream
            sage: L = LazyPowerSeriesRing(QQ)
            sage: L()
            Uninitialized lazy power series
            sage: L(1)
            1
            sage: L(ZZ).coefficients(10)
            [0, 1, -1, 2, -2, 3, -3, 4, -4, 5]
            sage: L(iter(ZZ)).coefficients(10)
            [0, 1, -1, 2, -2, 3, -3, 4, -4, 5]
            sage: L(Stream(ZZ)).coefficients(10)
            [0, 1, -1, 2, -2, 3, -3, 4, -4, 5]

        ::

            sage: a = L([1,2,3])
            sage: a.coefficients(3)
            [1, 2, 3]
            sage: L(a) is a
            True
            sage: L_RR = LazyPowerSeriesRing(RR)
            sage: b = L_RR(a)
            sage: b.coefficients(3)
            [1.00000000000000, 2.00000000000000, 3.00000000000000]
            sage: L(b)
            Traceback (most recent call last):
            ...
            TypeError: do not know how to coerce ... into self

        TESTS::

            sage: L(pi)
            Traceback (most recent call last):
            ...
            TypeError: do not know how to coerce pi into self
        """
        cls = self._element_class
        BR = self.base_ring()

        if x is None:
            res = cls(self, stream=None, order=unk, aorder=unk,
                      aorder_changed=True, is_initialized=False)
            res.compute_aorder = uninitialized
            return res

        if isinstance(x, LazyPowerSeries):
            x_parent = x.parent()
            if x_parent.__class__ != self.__class__:
                raise ValueError

            if x_parent.base_ring() == self.base_ring():
                return x
            else:
                if self.base_ring().has_coerce_map_from(x_parent.base_ring()):
                    return x._new(partial(x._change_ring_gen, self.base_ring()), lambda ao: ao, x, parent=self)


        if hasattr(x, "parent") and BR.has_coerce_map_from(x.parent()):
            x = BR(x)
            return self.term(x, 0)

        if hasattr(x, "__iter__") and not isinstance(x, Stream_class):
            x = iter(x)

        if is_iterator(x):
            x = Stream(x)

        if isinstance(x, Stream_class):
            aorder = order if order != unk else 0
            return cls(self, stream=x, order=order, aorder=aorder,
                       aorder_changed=False, is_initialized=True)
        elif not hasattr(x, "parent"):
            x = BR(x)
            return self.term(x, 0)

        raise TypeError, "do not know how to coerce %s into self"%x
コード例 #3
0
def Set(X=frozenset()):
    r"""
    Create the underlying set of ``X``.

    If ``X`` is a list, tuple, Python set, or ``X.is_finite()`` is
    ``True``, this returns a wrapper around Python's enumerated immutable
    ``frozenset`` type with extra functionality.  Otherwise it returns a
    more formal wrapper.

    If you need the functionality of mutable sets, use Python's
    builtin set type.

    EXAMPLES::

        sage: X = Set(GF(9,'a'))
        sage: X
        {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
        sage: type(X)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: Y = X.union(Set(QQ))
        sage: Y
        Set-theoretic union of {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2} and Set of elements of Rational Field
        sage: type(Y)
        <class 'sage.sets.set.Set_object_union_with_category'>

    Usually sets can be used as dictionary keys.

    ::

        sage: d={Set([2*I,1+I]):10}
        sage: d                  # key is randomly ordered
        {{I + 1, 2*I}: 10}
        sage: d[Set([1+I,2*I])]
        10
        sage: d[Set((1+I,2*I))]
        10

    The original object is often forgotten.

    ::

        sage: v = [1,2,3]
        sage: X = Set(v)
        sage: X
        {1, 2, 3}
        sage: v.append(5)
        sage: X
        {1, 2, 3}
        sage: 5 in X
        False

    Set also accepts iterators, but be careful to only give *finite* sets.

    ::

        sage: list(Set(iter([1, 2, 3, 4, 5])))
        [1, 2, 3, 4, 5]

    We can also create sets from different types::

        sage: Set([Sequence([3,1], immutable=True), 5, QQ, Partition([3,1,1])])
        {Rational Field, [3, 1, 1], [3, 1], 5}

    However each of the objects must be hashable::

        sage: Set([QQ, [3, 1], 5])
        Traceback (most recent call last):
        ...
        TypeError: unhashable type: 'list'

    TESTS::

        sage: Set(Primes())
        Set of all prime numbers: 2, 3, 5, 7, ...
        sage: Set(Subsets([1,2,3])).cardinality()
        8
        sage: Set(iter([1,2,3]))
        {1, 2, 3}
        sage: type(_)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: S = Set([])
        sage: TestSuite(S).run()

    Check that :trac:`16090` is fixed::

        sage: Set()
        {}
    """
    if is_Set(X):
        return X

    if isinstance(X, Element):
        raise TypeError("Element has no defined underlying set")
    elif isinstance(X, (list, tuple, set, frozenset)):
        return Set_object_enumerated(frozenset(X))
    try:
        if X.is_finite():
            return Set_object_enumerated(X)
    except AttributeError:
        pass
    if is_iterator(X):
        # Note we are risking an infinite loop here,
        # but this is the way Python behaves too: try
        # sage: set(an iterator which does not terminate)
        return Set_object_enumerated(list(X))
    return Set_object(X)
コード例 #4
0
ファイル: set.py プロジェクト: chos9/sage
def Set(X):
    r"""
    Create the underlying set of $X$.

    If $X$ is a list, tuple, Python set, or ``X.is_finite()`` is
    true, this returns a wrapper around Python's enumerated immutable
    frozenset type with extra functionality.  Otherwise it returns a
    more formal wrapper.

    If you need the functionality of mutable sets, use Python's
    builtin set type.

    EXAMPLES::

        sage: X = Set(GF(9,'a'))
        sage: X
        {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
        sage: type(X)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: Y = X.union(Set(QQ))
        sage: Y
        Set-theoretic union of {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2} and Set of elements of Rational Field
        sage: type(Y)
        <class 'sage.sets.set.Set_object_union_with_category'>

    Usually sets can be used as dictionary keys.

    ::

        sage: d={Set([2*I,1+I]):10}
        sage: d                  # key is randomly ordered
        {{I + 1, 2*I}: 10}
        sage: d[Set([1+I,2*I])]
        10
        sage: d[Set((1+I,2*I))]
        10

    The original object is often forgotten.

    ::

        sage: v = [1,2,3]
        sage: X = Set(v)
        sage: X
        {1, 2, 3}
        sage: v.append(5)
        sage: X
        {1, 2, 3}
        sage: 5 in X
        False

    Set also accepts iterators, but be careful to only give *finite* sets.

    ::

        sage: list(Set(iter([1, 2, 3, 4, 5])))
        [1, 2, 3, 4, 5]

    TESTS::

        sage: Set(Primes())
        Set of all prime numbers: 2, 3, 5, 7, ...
        sage: Set(Subsets([1,2,3])).cardinality()
        8
        sage: Set(iter([1,2,3]))
        {1, 2, 3}
        sage: type(_)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: S = Set([])
        sage: TestSuite(S).run()
    """
    if is_Set(X):
        return X

    if isinstance(X, Element):
        raise TypeError, "Element has no defined underlying set"
    elif isinstance(X, (list, tuple, set, frozenset)):
        return Set_object_enumerated(frozenset(X))
    try:
        if X.is_finite():
            return Set_object_enumerated(X)
    except AttributeError:
        pass
    if is_iterator(X):
        # Note we are risking an infinite loop here,
        # but this is the way Python behaves too: try
        # sage: set(an iterator which does not terminate)
        return Set_object_enumerated(list(X))
    return Set_object(X)
コード例 #5
0
ファイル: set.py プロジェクト: DrXyzzy/sage
def Set(X=frozenset()):
    r"""
    Create the underlying set of ``X``.

    If ``X`` is a list, tuple, Python set, or ``X.is_finite()`` is
    ``True``, this returns a wrapper around Python's enumerated immutable
    ``frozenset`` type with extra functionality.  Otherwise it returns a
    more formal wrapper.

    If you need the functionality of mutable sets, use Python's
    builtin set type.

    EXAMPLES::

        sage: X = Set(GF(9,'a'))
        sage: X
        {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
        sage: type(X)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: Y = X.union(Set(QQ))
        sage: Y
        Set-theoretic union of {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2} and Set of elements of Rational Field
        sage: type(Y)
        <class 'sage.sets.set.Set_object_union_with_category'>

    Usually sets can be used as dictionary keys.

    ::

        sage: d={Set([2*I,1+I]):10}
        sage: d                  # key is randomly ordered
        {{I + 1, 2*I}: 10}
        sage: d[Set([1+I,2*I])]
        10
        sage: d[Set((1+I,2*I))]
        10

    The original object is often forgotten.

    ::

        sage: v = [1,2,3]
        sage: X = Set(v)
        sage: X
        {1, 2, 3}
        sage: v.append(5)
        sage: X
        {1, 2, 3}
        sage: 5 in X
        False

    Set also accepts iterators, but be careful to only give *finite* sets.

    ::

        sage: list(Set(iter([1, 2, 3, 4, 5])))
        [1, 2, 3, 4, 5]

    We can also create sets from different types::

        sage: sorted(Set([Sequence([3,1], immutable=True), 5, QQ, Partition([3,1,1])]), key=str)
        [5, Rational Field, [3, 1, 1], [3, 1]]

    However each of the objects must be hashable::

        sage: Set([QQ, [3, 1], 5])
        Traceback (most recent call last):
        ...
        TypeError: unhashable type: 'list'

    TESTS::

        sage: Set(Primes())
        Set of all prime numbers: 2, 3, 5, 7, ...
        sage: Set(Subsets([1,2,3])).cardinality()
        8
        sage: S = Set(iter([1,2,3])); S
        {1, 2, 3}
        sage: type(S)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: S = Set([])
        sage: TestSuite(S).run()

    Check that :trac:`16090` is fixed::

        sage: Set()
        {}
    """
    if is_Set(X):
        return X

    if isinstance(X, Element):
        raise TypeError("Element has no defined underlying set")
    elif isinstance(X, (list, tuple, set, frozenset)):
        return Set_object_enumerated(frozenset(X))
    try:
        if X.is_finite():
            return Set_object_enumerated(X)
    except AttributeError:
        pass
    if is_iterator(X):
        # Note we are risking an infinite loop here,
        # but this is the way Python behaves too: try
        # sage: set(an iterator which does not terminate)
        return Set_object_enumerated(list(X))
    return Set_object(X)
コード例 #6
0
def Set(X):
    r"""
    Create the underlying set of $X$.

    If $X$ is a list, tuple, Python set, or ``X.is_finite()`` is
    true, this returns a wrapper around Python's enumerated immutable
    frozenset type with extra functionality.  Otherwise it returns a
    more formal wrapper.

    If you need the functionality of mutable sets, use Python's
    builtin set type.

    EXAMPLES::

        sage: X = Set(GF(9,'a'))
        sage: X
        {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
        sage: type(X)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: Y = X.union(Set(QQ))
        sage: Y
        Set-theoretic union of {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2} and Set of elements of Rational Field
        sage: type(Y)
        <class 'sage.sets.set.Set_object_union_with_category'>

    Usually sets can be used as dictionary keys.

    ::
    
        sage: d={Set([2*I,1+I]):10}
        sage: d                  # key is randomly ordered
        {{I + 1, 2*I}: 10}          
        sage: d[Set([1+I,2*I])]
        10
        sage: d[Set((1+I,2*I))]
        10

    The original object is often forgotten.

    ::
    
        sage: v = [1,2,3]
        sage: X = Set(v)
        sage: X
        {1, 2, 3}
        sage: v.append(5)
        sage: X
        {1, 2, 3}
        sage: 5 in X
        False

    Set also accepts iterators, but be careful to only give *finite* sets.

    ::

        sage: list(Set(iter([1, 2, 3, 4, 5])))
        [1, 2, 3, 4, 5]

    TESTS::

        sage: Set(Primes())
        Set of all prime numbers: 2, 3, 5, 7, ...
        sage: Set(Subsets([1,2,3])).cardinality()
        8
        sage: Set(iter([1,2,3]))
        {1, 2, 3}
        sage: type(_)
        <class 'sage.sets.set.Set_object_enumerated_with_category'>
        sage: S = Set([])
        sage: TestSuite(S).run()
    """
    if is_Set(X):
        return X

    if isinstance(X, Element):
        raise TypeError, "Element has no defined underlying set"
    elif isinstance(X, (list, tuple, set, frozenset)):
        return Set_object_enumerated(frozenset(X))
    try:
        if X.is_finite():
            return Set_object_enumerated(X)
    except AttributeError:
        pass
    if is_iterator(X):
        # Note we are risking an infinite loop here,
        # but this is the way Python behaves too: try
        # sage: set(an iterator which does not terminate)
        return Set_object_enumerated(list(X))
    return Set_object(X)