コード例 #1
0
ファイル: braid.py プロジェクト: bopopescu/sage-5
    def plot(self, color='rainbow', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds):
        """
        Plot the braid

        The following options are available:

        - ``color`` -- (default: ``'rainbow'``) the color of the
          strands. Possible values are:

            * ``'rainbow'``, uses :meth:`~sage.plot.colors.rainbow`
              according to the number of strands.

            * a valid color name for :meth:`~sage.plot.bezier_path`
              and :meth:`~sage.plot.line`. Used for all strands.

            * a list or a tuple of colors for each individual strand.

        - ``orientation`` -- (default: ``'bottom-top'``) determines how
          the braid is printed. The possible values are:

            * ``'bottom-top'``, the braid is printed from bottom to top

            * ``'top-bottom'``, the braid is printed from top to bottom

            * ``'left-right'``, the braid is printed from left to right

        - ``gap`` -- floating point number (default: 0.05). determines
          the size of the gap left when a strand goes under another.

        - ``aspect_ratio`` -- floating point number (default:
          ``1``). The aspect ratio.

        - ``**kwds`` -- other keyword options that are passed to
          :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`.

        EXAMPLES::

            sage: B = BraidGroup(4, 's')
            sage: b = B([1, 2, 3, 1, 2, 1])
            sage: b.plot()
            sage: b.plot(color=["red", "blue", "red", "blue"])

            sage: B.<s,t> = BraidGroup(3)
            sage: b = t^-1*s^2
            sage: b.plot(orientation="left-right", color="red")
        """
        from sage.plot.bezier_path import bezier_path
        from sage.plot.plot import Graphics, line
        from sage.plot.colors import rainbow
        if orientation=='top-bottom':
            orx = 0
            ory = -1
            nx = 1
            ny = 0
        elif orientation=='left-right':
            orx = 1
            ory = 0
            nx = 0
            ny = -1
        elif orientation=='bottom-top':
            orx = 0
            ory = 1
            nx = 1
            ny = 0
        else:
            raise ValueError('unknown value for "orientation"')
        n = self.strands()
        if isinstance(color, (list, tuple)):
            if len(color) != n:
                raise TypeError("color (=%s) must contain exactly %d colors" % (color, n))
            col = list(color)
        elif color == "rainbow":
            col = rainbow(n)
        else:
            col = [color]*n
        braid = self.Tietze()
        a = Graphics()
        op = gap
        for i, m in enumerate(braid):
            for j in range(n):
                if m==j+1:
                    a += bezier_path([[(j*nx+i*orx, i*ory+j*ny), (j*nx+orx*(i+0.25), j*ny+ory*(i+0.25)),
                                       (nx*(j+0.5)+orx*(i+0.5), ny*(j+0.5)+ory*(i+0.5))],
                                      [(nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col[j], **kwds)
                elif m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5+4*op)+orx*(i+0.5-2*op), ny*(j-0.5+4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j-0.5+2*op)+orx*(i+0.5-op), ny*(j-0.5+2*op)+ory*(i+0.5-op))]],
                                     color=col[j], **kwds)
                    a += bezier_path([[(nx*(j-0.5-2*op)+orx*(i+0.5+op), ny*(j-0.5-2*op)+ory*(i+0.5+op)),
                                       (nx*(j-0.5-4*op)+orx*(i+0.5+2*op), ny*(j-0.5-4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col[j], **kwds)
                    col[j], col[j-1] = col[j-1], col[j]
                elif -m==j+1:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j+0.5-4*op)+orx*(i+0.5-2*op), ny*(j+0.5-4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j+0.5-2*op)+orx*(i+0.5-op), ny*(j+0.5-2*op)+ory*(i+0.5-op))]],
                                     color=col[j], **kwds)
                    a += bezier_path([[(nx*(j+0.5+2*op)+orx*(i+0.5+op), ny*(j+0.5+2*op)+ory*(i+0.5+op)),
                                       (nx*(j+0.5+4*op)+orx*(i+0.5+2*op), ny*(j+0.5+4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col[j], **kwds)
                elif -m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5)+orx*(i+0.5), ny*(j-0.5)+ory*(i+0.5))],
                                      [(nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col[j], **kwds)
                    col[j], col[j-1] = col[j-1], col[j]
                else:
                    a += line([(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+1), ny*j+ory*(i+1))], color=col[j], **kwds)
        a.set_aspect_ratio(aspect_ratio)
        a.axes(axes)
        return a
コード例 #2
0
ファイル: braid.py プロジェクト: chos9/sage
    def plot(self, color='blue', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds):
        """
        Plot the braid

        The following options are available:

        - ``orientation`` - (default: ``'bottom-top'``) determines how
          the braid is printed. The possible values are:

            * ``'bottom-top'``, the braid is printed from bottom to top

            * ``'top-bottom'``, the braid is printed from top to bottom

            * ``'left-right'``, the braid is printed from left to right

        - ``gap`` -- floating point number (default: 0.05). determines
          the size of the gap left when a strand goes under another.

        - ``aspect_ratio`` -- floating point number (default:
          ``1``). The aspect ratio.

        - ``**kwds`` -- other keyword options that are passed to
          :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`.

        EXAMPLES::

            sage: B = BraidGroup(4, 's')
            sage: b = B([1, 2, 3, 1, 2, 1])
            sage: b.plot()
        """
        from sage.plot.bezier_path import bezier_path
        from sage.plot.plot import Graphics, line
        if orientation=='top-bottom':
            orx = 0
            ory = -1
            nx = 1
            ny = 0
        elif orientation=='left-right':
            orx = 1
            ory = 0
            nx = 0
            ny = -1
        elif orientation=='bottom-top':
            orx = 0
            ory = 1
            nx = 1
            ny = 0
        else:
            raise ValueError('unknown value for "orientation"')
        col = color
        br = self.Tietze()
        n = self.strands()
        a = Graphics()
        op = gap
        for i in range(len(br)):
            m = br[i]
            for j in range(n):
                if m==j+1:
                    a += bezier_path([[(j*nx+i*orx, i*ory+j*ny), (j*nx+orx*(i+0.25), j*ny+ory*(i+0.25)),
                                       (nx*(j+0.5)+orx*(i+0.5), ny*(j+0.5)+ory*(i+0.5))],
                                      [(nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds)
                elif m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5+4*op)+orx*(i+0.5-2*op), ny*(j-0.5+4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j-0.5+2*op)+orx*(i+0.5-op), ny*(j-0.5+2*op)+ory*(i+0.5-op))]],
                                     color=col, **kwds)
                    a += bezier_path([[(nx*(j-0.5-2*op)+orx*(i+0.5+op), ny*(j-0.5-2*op)+ory*(i+0.5+op)),
                                       (nx*(j-0.5-4*op)+orx*(i+0.5+2*op), ny*(j-0.5-4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds)
                elif -m==j+1:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j+0.5-4*op)+orx*(i+0.5-2*op), ny*(j+0.5-4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j+0.5-2*op)+orx*(i+0.5-op), ny*(j+0.5-2*op)+ory*(i+0.5-op))]],
                                     color=col, **kwds)
                    a += bezier_path([[(nx*(j+0.5+2*op)+orx*(i+0.5+op), ny*(j+0.5+2*op)+ory*(i+0.5+op)),
                                       (nx*(j+0.5+4*op)+orx*(i+0.5+2*op), ny*(j+0.5+4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds)
                elif -m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5)+orx*(i+0.5), ny*(j-0.5)+ory*(i+0.5))],
                                      [(nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds)
                else:
                    a += line([(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+1), ny*j+ory*(i+1))], color=col, **kwds)
        a.set_aspect_ratio(aspect_ratio)
        a.axes(axes)
        return a
コード例 #3
0
ファイル: sine_gordon.py プロジェクト: sagemath/sage
    def plot(self, **kwds):
        r"""
        Plot the initial triangulation associated to ``self``.

        INPUT:

        - ``radius`` - the radius of the disk; by default the length of
          the circle is the number of vertices
        - ``points_color`` - the color of the vertices; default 'black'
        - ``points_size`` - the size of the vertices; default 7
        - ``triangulation_color`` - the color of the arcs; default 'black'
        - ``triangulation_thickness`` - the thickness of the arcs; default 0.5
        - ``shading_color`` - the color of the shading used on neuter
          intervals; default 'lightgray'
        - ``reflections_color`` - the color of the reflection axes; default
          'blue'
        - ``reflections_thickness`` - the thickness of the reflection axes;
          default 1

        EXAMPLES::

            sage: Y = SineGordonYsystem('A',(6,4,3))
            sage: Y.plot()  # long time 2s
            Graphics object consisting of 219 graphics primitives
        """
        # Set up plotting options
        if 'radius' in kwds:
            radius = kwds['radius']
        else:
            radius = ceil(self.r() / (2 * pi))
        points_opts = {}
        if 'points_color' in kwds:
            points_opts['color'] = kwds['points_color']
        else:
            points_opts['color'] = 'black'
        if 'points_size' in kwds:
            points_opts['size'] = kwds['points_size']
        else:
            points_opts['size'] = 7
        triangulation_opts = {}
        if 'triangulation_color' in kwds:
            triangulation_opts['color'] = kwds['triangulation_color']
        else:
            triangulation_opts['color'] = 'black'
        if 'triangulation_thickness' in kwds:
            triangulation_opts['thickness'] = kwds['triangulation_thickness']
        else:
            triangulation_opts['thickness'] = 0.5
        shading_opts = {}
        if 'shading_color' in kwds:
            shading_opts['color'] = kwds['shading_color']
        else:
            shading_opts['color'] = 'lightgray'
        reflections_opts = {}
        if 'reflections_color' in kwds:
            reflections_opts['color'] = kwds['reflections_color']
        else:
            reflections_opts['color'] = 'blue'
        if 'reflections_thickness' in kwds:
            reflections_opts['thickness'] = kwds['reflections_thickness']
        else:
            reflections_opts['thickness'] = 1
        # Helper functions

        def triangle(x):
            (a, b) = sorted(x[:2])
            for p in self.vertices():
                if (p, a) in self.triangulation() or (a, p) in self.triangulation():
                    if (p, b) in self.triangulation() or (b, p) in self.triangulation():
                        if p < a or p > b:
                            return sorted((a, b, p))

        def plot_arc(radius, p, q, **opts):
            # TODO: THIS SHOULD USE THE EXISTING PLOT OF ARCS!
            # plot the arc from p to q differently depending on the type of self
            p = ZZ(p)
            q = ZZ(q)
            t = var('t')
            if p - q in [1, -1]:
                def f(t):
                    return (radius * cos(t), radius * sin(t))
                (p, q) = sorted([p, q])
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                return parametric_plot(f(t), (t, angle_q, angle_p), **opts)
            if self.type() == 'A':
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                if angle_p < angle_q:
                    angle_p += 2 * pi
                internal_angle = angle_p - angle_q
                if internal_angle > pi:
                    (angle_p, angle_q) = (angle_q + 2 * pi, angle_p)
                    internal_angle = angle_p - angle_q
                angle_center = (angle_p+angle_q) / 2
                hypotenuse = radius / cos(internal_angle / 2)
                radius_arc = hypotenuse * sin(internal_angle / 2)
                center = (hypotenuse * cos(angle_center),
                          hypotenuse * sin(angle_center))
                center_angle_p = angle_p + pi / 2
                center_angle_q = angle_q + 3 * pi / 2

                def f(t):
                    return (radius_arc * cos(t) + center[0],
                            radius_arc * sin(t) + center[1])
                return parametric_plot(f(t), (t, center_angle_p,
                                              center_angle_q), **opts)
            elif self.type() == 'D':
                if p >= q:
                    q += self.r()
                px = -2 * pi * p / self.r() + pi / 2
                qx = -2 * pi * q / self.r() + pi / 2
                arc_radius = (px - qx) / 2
                arc_center = qx + arc_radius

                def f(t):
                    return exp(I * ((cos(t) + I * sin(t)) *
                                    arc_radius + arc_center)) * radius
                return parametric_plot((real_part(f(t)), imag_part(f(t))),
                                       (t, 0, pi), **opts)

        def vertex_to_angle(v):
            # v==0 corresponds to pi/2
            return -2 * pi * RR(v) / self.r() + 5 * pi / 2

        # Begin plotting
        P = Graphics()
        # Shade neuter intervals
        neuter_intervals = [x for x in flatten(self.intervals()[:-1],
                                               max_level=1)
                            if x[2] in ["NR", "NL"]]
        shaded_triangles = map(triangle, neuter_intervals)
        for (p, q, r) in shaded_triangles:
            points = list(plot_arc(radius, p, q)[0])
            points += list(plot_arc(radius, q, r)[0])
            points += list(reversed(plot_arc(radius, p, r)[0]))
            P += polygon2d(points, **shading_opts)
        # Disk boundary
        P += circle((0, 0), radius, **triangulation_opts)
        # Triangulation
        for (p, q) in self.triangulation():
            P += plot_arc(radius, p, q, **triangulation_opts)
        if self.type() == 'D':
            s = radius / 50.0
            P += polygon2d([(s, 5 * s), (s, 7 * s),
                            (3 * s, 5 * s), (3 * s, 7 * s)],
                           color=triangulation_opts['color'])
            P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)],
                              [(2 * s, 10 * s), (s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)],
                              [(-2 * s, 10 * s), (-s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += point((0, 0), zorder=len(P), **points_opts)
        # Vertices
        v_points = {x: (radius * cos(vertex_to_angle(x)),
                        radius * sin(vertex_to_angle(x)))
                    for x in self.vertices()}
        for v in v_points:
            P += point(v_points[v], zorder=len(P), **points_opts)
        # Reflection axes
        P += line([(0, 1.1 * radius), (0, -1.1 * radius)],
                  zorder=len(P), **reflections_opts)
        axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1])
        (a, b) = (1.1 * radius * cos(axis_angle),
                  1.1 * radius * sin(axis_angle))
        P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts)
        # Wrap up
        P.set_aspect_ratio(1)
        P.axes(False)
        return P
コード例 #4
0
    def plot(self, color='blue', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds):
        """
        Plot the braid

        The following options are available:

        - ``orientation`` - (default: ``'bottom-top'``) determines how
          the braid is printed. The possible values are:

            * ``'bottom-top'``, the braid is printed from bottom to top

            * ``'top-bottom'``, the braid is printed from top to bottom

            * ``'left-right'``, the braid is printed from left to right

        - ``gap`` -- floating point number (default: 0.05). determines
          the size of the gap left when a strand goes under another.

        - ``aspect_ratio`` -- floating point number (default:
          ``1``). The aspect ratio.

        - ``**kwds`` -- other keyword options that are passed to
          :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`.

        EXAMPLES::

            sage: B = BraidGroup(4, 's')
            sage: b = B([1, 2, 3, 1, 2, 1])
            sage: b.plot()
        """
        from sage.plot.bezier_path import bezier_path
        from sage.plot.plot import Graphics, line
        if orientation=='top-bottom':
            orx = 0
            ory = -1
            nx = 1
            ny = 0
        elif orientation=='left-right':
            orx = 1
            ory = 0
            nx = 0
            ny = -1
        elif orientation=='bottom-top':
            orx = 0
            ory = 1
            nx = 1
            ny = 0
        else:
            raise ValueError('unknown value for "orientation"')
        col = color
        br = self.Tietze()
        n = self.strands()
        a = Graphics()
        op = gap
        for i in range(len(br)):
            m = br[i]
            for j in range(n):
                if m==j+1:
                    a += bezier_path([[(j*nx+i*orx, i*ory+j*ny), (j*nx+orx*(i+0.25), j*ny+ory*(i+0.25)),
                                       (nx*(j+0.5)+orx*(i+0.5), ny*(j+0.5)+ory*(i+0.5))],
                                      [(nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds)
                elif m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5+4*op)+orx*(i+0.5-2*op), ny*(j-0.5+4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j-0.5+2*op)+orx*(i+0.5-op), ny*(j-0.5+2*op)+ory*(i+0.5-op))]],
                                     color=col, **kwds)
                    a += bezier_path([[(nx*(j-0.5-2*op)+orx*(i+0.5+op), ny*(j-0.5-2*op)+ory*(i+0.5+op)),
                                       (nx*(j-0.5-4*op)+orx*(i+0.5+2*op), ny*(j-0.5-4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds)
                elif -m==j+1:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j+0.5-4*op)+orx*(i+0.5-2*op), ny*(j+0.5-4*op)+ory*(i+0.5-2*op)),
                                       (nx*(j+0.5-2*op)+orx*(i+0.5-op), ny*(j+0.5-2*op)+ory*(i+0.5-op))]],
                                     color=col, **kwds)
                    a += bezier_path([[(nx*(j+0.5+2*op)+orx*(i+0.5+op), ny*(j+0.5+2*op)+ory*(i+0.5+op)),
                                       (nx*(j+0.5+4*op)+orx*(i+0.5+2*op), ny*(j+0.5+4*op)+ory*(i+0.5+2*op)),
                                       (nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)),
                                       (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds)
                elif -m==j:
                    a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)),
                                       (nx*(j-0.5)+orx*(i+0.5), ny*(j-0.5)+ory*(i+0.5))],
                                      [(nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)),
                                       (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds)
                else:
                    a += line([(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+1), ny*j+ory*(i+1))], color=col, **kwds)
        a.set_aspect_ratio(aspect_ratio)
        a.axes(axes)
        return a
コード例 #5
0
ファイル: sine_gordon.py プロジェクト: wdv4758h/sage
    def plot(self, **kwds):
        r"""
        Plot the initial triangulation associated to ``self``.

        INPUT:

        - ``radius`` - the radius of the disk; by default the length of
          the circle is the number of vertices
        - ``points_color`` - the color of the vertices; default 'black'
        - ``points_size`` - the size of the vertices; default 7
        - ``triangulation_color`` - the color of the arcs; default 'black'
        - ``triangulation_thickness`` - the thickness of the arcs; default 0.5
        - ``shading_color`` - the color of the shading used on neuter
          intervals; default 'lightgray'
        - ``reflections_color`` - the color of the reflection axes; default
          'blue'
        - ``reflections_thickness`` - the thickness of the reflection axes;
          default 1

        EXAMPLES::

            sage: Y = SineGordonYsystem('A',(6,4,3));
            sage: Y.plot()      # not tested
        """
        # Set up plotting options
        if 'radius' in kwds:
            radius = kwds['radius']
        else:
            radius = ceil(self.r() / (2 * pi))
        points_opts = {}
        if 'points_color' in kwds:
            points_opts['color'] = kwds['points_color']
        else:
            points_opts['color'] = 'black'
        if 'points_size' in kwds:
            points_opts['size'] = kwds['points_size']
        else:
            points_opts['size'] = 7
        triangulation_opts = {}
        if 'triangulation_color' in kwds:
            triangulation_opts['color'] = kwds['triangulation_color']
        else:
            triangulation_opts['color'] = 'black'
        if 'triangulation_thickness' in kwds:
            triangulation_opts['thickness'] = kwds['triangulation_thickness']
        else:
            triangulation_opts['thickness'] = 0.5
        shading_opts = {}
        if 'shading_color' in kwds:
            shading_opts['color'] = kwds['shading_color']
        else:
            shading_opts['color'] = 'lightgray'
        reflections_opts = {}
        if 'reflections_color' in kwds:
            reflections_opts['color'] = kwds['reflections_color']
        else:
            reflections_opts['color'] = 'blue'
        if 'reflections_thickness' in kwds:
            reflections_opts['thickness'] = kwds['reflections_thickness']
        else:
            reflections_opts['thickness'] = 1
        # Helper functions

        def triangle(x):
            (a, b) = sorted(x[:2])
            for p in self.vertices():
                if (p, a) in self.triangulation() or (a, p) in self.triangulation():
                    if (p, b) in self.triangulation() or (b, p) in self.triangulation():
                        if p < a or p > b:
                            return sorted((a, b, p))

        def plot_arc(radius, p, q, **opts):
            # plot the arc from p to q differently depending on the type of self
            p = ZZ(p)
            q = ZZ(q)
            t = var('t')
            if p - q in [1, -1]:
                def f(t):
                    return (radius * cos(t), radius * sin(t))
                (p, q) = sorted([p, q])
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                return parametric_plot(f(t), (t, angle_q, angle_p), **opts)
            if self.type() == 'A':
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                if angle_p < angle_q:
                    angle_p += 2 * pi
                internal_angle = angle_p - angle_q
                if internal_angle > pi:
                    (angle_p, angle_q) = (angle_q + 2 * pi, angle_p)
                    internal_angle = angle_p - angle_q
                angle_center = (angle_p+angle_q) / 2
                hypotenuse = radius / cos(internal_angle / 2)
                radius_arc = hypotenuse * sin(internal_angle / 2)
                center = (hypotenuse * cos(angle_center),
                          hypotenuse * sin(angle_center))
                center_angle_p = angle_p + pi / 2
                center_angle_q = angle_q + 3 * pi / 2

                def f(t):
                    return (radius_arc * cos(t) + center[0],
                            radius_arc * sin(t) + center[1])
                return parametric_plot(f(t), (t, center_angle_p,
                                              center_angle_q), **opts)
            elif self.type() == 'D':
                if p >= q:
                    q += self.r()
                px = -2 * pi * p / self.r() + pi / 2
                qx = -2 * pi * q / self.r() + pi / 2
                arc_radius = (px - qx) / 2
                arc_center = qx + arc_radius

                def f(t):
                    return exp(I * ((cos(t) + I * sin(t)) *
                                    arc_radius + arc_center)) * radius
                return parametric_plot((real_part(f(t)), imag_part(f(t))),
                                       (t, 0, pi), **opts)

        def vertex_to_angle(v):
            # v==0 corresponds to pi/2
            return -2 * pi * RR(v) / self.r() + 5 * pi / 2

        # Begin plotting
        P = Graphics()
        # Shade neuter intervals
        neuter_intervals = [x for x in flatten(self.intervals()[:-1],
                                               max_level=1)
                            if x[2] in ["NR", "NL"]]
        shaded_triangles = map(triangle, neuter_intervals)
        for (p, q, r) in shaded_triangles:
            points = list(plot_arc(radius, p, q)[0])
            points += list(plot_arc(radius, q, r)[0])
            points += list(reversed(plot_arc(radius, p, r)[0]))
            P += polygon2d(points, **shading_opts)
        # Disk boundary
        P += circle((0, 0), radius, **triangulation_opts)
        # Triangulation
        for (p, q) in self.triangulation():
            P += plot_arc(radius, p, q, **triangulation_opts)
        if self.type() == 'D':
            s = radius / 50.0
            P += polygon2d([(s, 5 * s), (s, 7 * s),
                            (3 * s, 5 * s), (3 * s, 7 * s)],
                           color=triangulation_opts['color'])
            P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)],
                              [(2 * s, 10 * s), (s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)],
                              [(-2 * s, 10 * s), (-s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += point((0, 0), zorder=len(P), **points_opts)
        # Vertices
        v_points = {x: (radius * cos(vertex_to_angle(x)),
                        radius * sin(vertex_to_angle(x)))
                    for x in self.vertices()}
        for v in v_points:
            P += point(v_points[v], zorder=len(P), **points_opts)
        # Reflection axes
        P += line([(0, 1.1 * radius), (0, -1.1 * radius)],
                  zorder=len(P), **reflections_opts)
        axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1])
        (a, b) = (1.1 * radius * cos(axis_angle),
                  1.1 * radius * sin(axis_angle))
        P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts)
        # Wrap up
        P.set_aspect_ratio(1)
        P.axes(False)
        return P