def plot(self, color='rainbow', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds): """ Plot the braid The following options are available: - ``color`` -- (default: ``'rainbow'``) the color of the strands. Possible values are: * ``'rainbow'``, uses :meth:`~sage.plot.colors.rainbow` according to the number of strands. * a valid color name for :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`. Used for all strands. * a list or a tuple of colors for each individual strand. - ``orientation`` -- (default: ``'bottom-top'``) determines how the braid is printed. The possible values are: * ``'bottom-top'``, the braid is printed from bottom to top * ``'top-bottom'``, the braid is printed from top to bottom * ``'left-right'``, the braid is printed from left to right - ``gap`` -- floating point number (default: 0.05). determines the size of the gap left when a strand goes under another. - ``aspect_ratio`` -- floating point number (default: ``1``). The aspect ratio. - ``**kwds`` -- other keyword options that are passed to :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`. EXAMPLES:: sage: B = BraidGroup(4, 's') sage: b = B([1, 2, 3, 1, 2, 1]) sage: b.plot() sage: b.plot(color=["red", "blue", "red", "blue"]) sage: B.<s,t> = BraidGroup(3) sage: b = t^-1*s^2 sage: b.plot(orientation="left-right", color="red") """ from sage.plot.bezier_path import bezier_path from sage.plot.plot import Graphics, line from sage.plot.colors import rainbow if orientation=='top-bottom': orx = 0 ory = -1 nx = 1 ny = 0 elif orientation=='left-right': orx = 1 ory = 0 nx = 0 ny = -1 elif orientation=='bottom-top': orx = 0 ory = 1 nx = 1 ny = 0 else: raise ValueError('unknown value for "orientation"') n = self.strands() if isinstance(color, (list, tuple)): if len(color) != n: raise TypeError("color (=%s) must contain exactly %d colors" % (color, n)) col = list(color) elif color == "rainbow": col = rainbow(n) else: col = [color]*n braid = self.Tietze() a = Graphics() op = gap for i, m in enumerate(braid): for j in range(n): if m==j+1: a += bezier_path([[(j*nx+i*orx, i*ory+j*ny), (j*nx+orx*(i+0.25), j*ny+ory*(i+0.25)), (nx*(j+0.5)+orx*(i+0.5), ny*(j+0.5)+ory*(i+0.5))], [(nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)), (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col[j], **kwds) elif m==j: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j-0.5+4*op)+orx*(i+0.5-2*op), ny*(j-0.5+4*op)+ory*(i+0.5-2*op)), (nx*(j-0.5+2*op)+orx*(i+0.5-op), ny*(j-0.5+2*op)+ory*(i+0.5-op))]], color=col[j], **kwds) a += bezier_path([[(nx*(j-0.5-2*op)+orx*(i+0.5+op), ny*(j-0.5-2*op)+ory*(i+0.5+op)), (nx*(j-0.5-4*op)+orx*(i+0.5+2*op), ny*(j-0.5-4*op)+ory*(i+0.5+2*op)), (nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)), (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col[j], **kwds) col[j], col[j-1] = col[j-1], col[j] elif -m==j+1: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j+0.5-4*op)+orx*(i+0.5-2*op), ny*(j+0.5-4*op)+ory*(i+0.5-2*op)), (nx*(j+0.5-2*op)+orx*(i+0.5-op), ny*(j+0.5-2*op)+ory*(i+0.5-op))]], color=col[j], **kwds) a += bezier_path([[(nx*(j+0.5+2*op)+orx*(i+0.5+op), ny*(j+0.5+2*op)+ory*(i+0.5+op)), (nx*(j+0.5+4*op)+orx*(i+0.5+2*op), ny*(j+0.5+4*op)+ory*(i+0.5+2*op)), (nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)), (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col[j], **kwds) elif -m==j: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j-0.5)+orx*(i+0.5), ny*(j-0.5)+ory*(i+0.5))], [(nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)), (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col[j], **kwds) col[j], col[j-1] = col[j-1], col[j] else: a += line([(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+1), ny*j+ory*(i+1))], color=col[j], **kwds) a.set_aspect_ratio(aspect_ratio) a.axes(axes) return a
def plot(self, color='blue', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds): """ Plot the braid The following options are available: - ``orientation`` - (default: ``'bottom-top'``) determines how the braid is printed. The possible values are: * ``'bottom-top'``, the braid is printed from bottom to top * ``'top-bottom'``, the braid is printed from top to bottom * ``'left-right'``, the braid is printed from left to right - ``gap`` -- floating point number (default: 0.05). determines the size of the gap left when a strand goes under another. - ``aspect_ratio`` -- floating point number (default: ``1``). The aspect ratio. - ``**kwds`` -- other keyword options that are passed to :meth:`~sage.plot.bezier_path` and :meth:`~sage.plot.line`. EXAMPLES:: sage: B = BraidGroup(4, 's') sage: b = B([1, 2, 3, 1, 2, 1]) sage: b.plot() """ from sage.plot.bezier_path import bezier_path from sage.plot.plot import Graphics, line if orientation=='top-bottom': orx = 0 ory = -1 nx = 1 ny = 0 elif orientation=='left-right': orx = 1 ory = 0 nx = 0 ny = -1 elif orientation=='bottom-top': orx = 0 ory = 1 nx = 1 ny = 0 else: raise ValueError('unknown value for "orientation"') col = color br = self.Tietze() n = self.strands() a = Graphics() op = gap for i in range(len(br)): m = br[i] for j in range(n): if m==j+1: a += bezier_path([[(j*nx+i*orx, i*ory+j*ny), (j*nx+orx*(i+0.25), j*ny+ory*(i+0.25)), (nx*(j+0.5)+orx*(i+0.5), ny*(j+0.5)+ory*(i+0.5))], [(nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)), (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds) elif m==j: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j-0.5+4*op)+orx*(i+0.5-2*op), ny*(j-0.5+4*op)+ory*(i+0.5-2*op)), (nx*(j-0.5+2*op)+orx*(i+0.5-op), ny*(j-0.5+2*op)+ory*(i+0.5-op))]], color=col, **kwds) a += bezier_path([[(nx*(j-0.5-2*op)+orx*(i+0.5+op), ny*(j-0.5-2*op)+ory*(i+0.5+op)), (nx*(j-0.5-4*op)+orx*(i+0.5+2*op), ny*(j-0.5-4*op)+ory*(i+0.5+2*op)), (nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)), (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds) elif -m==j+1: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j+0.5-4*op)+orx*(i+0.5-2*op), ny*(j+0.5-4*op)+ory*(i+0.5-2*op)), (nx*(j+0.5-2*op)+orx*(i+0.5-op), ny*(j+0.5-2*op)+ory*(i+0.5-op))]], color=col, **kwds) a += bezier_path([[(nx*(j+0.5+2*op)+orx*(i+0.5+op), ny*(j+0.5+2*op)+ory*(i+0.5+op)), (nx*(j+0.5+4*op)+orx*(i+0.5+2*op), ny*(j+0.5+4*op)+ory*(i+0.5+2*op)), (nx*(j+1)+orx*(i+0.75), ny*(j+1)+ory*(i+0.75)), (nx*(j+1)+orx*(i+1), ny*(j+1)+ory*(i+1))]], color=col, **kwds) elif -m==j: a += bezier_path([[(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+0.25), ny*j+ory*(i+0.25)), (nx*(j-0.5)+orx*(i+0.5), ny*(j-0.5)+ory*(i+0.5))], [(nx*(j-1)+orx*(i+0.75), ny*(j-1)+ory*(i+0.75)), (nx*(j-1)+orx*(i+1), ny*(j-1)+ory*(i+1))]], color=col, **kwds) else: a += line([(nx*j+orx*i, ny*j+ory*i), (nx*j+orx*(i+1), ny*j+ory*(i+1))], color=col, **kwds) a.set_aspect_ratio(aspect_ratio) a.axes(axes) return a
def plot(self, **kwds): r""" Plot the initial triangulation associated to ``self``. INPUT: - ``radius`` - the radius of the disk; by default the length of the circle is the number of vertices - ``points_color`` - the color of the vertices; default 'black' - ``points_size`` - the size of the vertices; default 7 - ``triangulation_color`` - the color of the arcs; default 'black' - ``triangulation_thickness`` - the thickness of the arcs; default 0.5 - ``shading_color`` - the color of the shading used on neuter intervals; default 'lightgray' - ``reflections_color`` - the color of the reflection axes; default 'blue' - ``reflections_thickness`` - the thickness of the reflection axes; default 1 EXAMPLES:: sage: Y = SineGordonYsystem('A',(6,4,3)) sage: Y.plot() # long time 2s Graphics object consisting of 219 graphics primitives """ # Set up plotting options if 'radius' in kwds: radius = kwds['radius'] else: radius = ceil(self.r() / (2 * pi)) points_opts = {} if 'points_color' in kwds: points_opts['color'] = kwds['points_color'] else: points_opts['color'] = 'black' if 'points_size' in kwds: points_opts['size'] = kwds['points_size'] else: points_opts['size'] = 7 triangulation_opts = {} if 'triangulation_color' in kwds: triangulation_opts['color'] = kwds['triangulation_color'] else: triangulation_opts['color'] = 'black' if 'triangulation_thickness' in kwds: triangulation_opts['thickness'] = kwds['triangulation_thickness'] else: triangulation_opts['thickness'] = 0.5 shading_opts = {} if 'shading_color' in kwds: shading_opts['color'] = kwds['shading_color'] else: shading_opts['color'] = 'lightgray' reflections_opts = {} if 'reflections_color' in kwds: reflections_opts['color'] = kwds['reflections_color'] else: reflections_opts['color'] = 'blue' if 'reflections_thickness' in kwds: reflections_opts['thickness'] = kwds['reflections_thickness'] else: reflections_opts['thickness'] = 1 # Helper functions def triangle(x): (a, b) = sorted(x[:2]) for p in self.vertices(): if (p, a) in self.triangulation() or (a, p) in self.triangulation(): if (p, b) in self.triangulation() or (b, p) in self.triangulation(): if p < a or p > b: return sorted((a, b, p)) def plot_arc(radius, p, q, **opts): # TODO: THIS SHOULD USE THE EXISTING PLOT OF ARCS! # plot the arc from p to q differently depending on the type of self p = ZZ(p) q = ZZ(q) t = var('t') if p - q in [1, -1]: def f(t): return (radius * cos(t), radius * sin(t)) (p, q) = sorted([p, q]) angle_p = vertex_to_angle(p) angle_q = vertex_to_angle(q) return parametric_plot(f(t), (t, angle_q, angle_p), **opts) if self.type() == 'A': angle_p = vertex_to_angle(p) angle_q = vertex_to_angle(q) if angle_p < angle_q: angle_p += 2 * pi internal_angle = angle_p - angle_q if internal_angle > pi: (angle_p, angle_q) = (angle_q + 2 * pi, angle_p) internal_angle = angle_p - angle_q angle_center = (angle_p+angle_q) / 2 hypotenuse = radius / cos(internal_angle / 2) radius_arc = hypotenuse * sin(internal_angle / 2) center = (hypotenuse * cos(angle_center), hypotenuse * sin(angle_center)) center_angle_p = angle_p + pi / 2 center_angle_q = angle_q + 3 * pi / 2 def f(t): return (radius_arc * cos(t) + center[0], radius_arc * sin(t) + center[1]) return parametric_plot(f(t), (t, center_angle_p, center_angle_q), **opts) elif self.type() == 'D': if p >= q: q += self.r() px = -2 * pi * p / self.r() + pi / 2 qx = -2 * pi * q / self.r() + pi / 2 arc_radius = (px - qx) / 2 arc_center = qx + arc_radius def f(t): return exp(I * ((cos(t) + I * sin(t)) * arc_radius + arc_center)) * radius return parametric_plot((real_part(f(t)), imag_part(f(t))), (t, 0, pi), **opts) def vertex_to_angle(v): # v==0 corresponds to pi/2 return -2 * pi * RR(v) / self.r() + 5 * pi / 2 # Begin plotting P = Graphics() # Shade neuter intervals neuter_intervals = [x for x in flatten(self.intervals()[:-1], max_level=1) if x[2] in ["NR", "NL"]] shaded_triangles = map(triangle, neuter_intervals) for (p, q, r) in shaded_triangles: points = list(plot_arc(radius, p, q)[0]) points += list(plot_arc(radius, q, r)[0]) points += list(reversed(plot_arc(radius, p, r)[0])) P += polygon2d(points, **shading_opts) # Disk boundary P += circle((0, 0), radius, **triangulation_opts) # Triangulation for (p, q) in self.triangulation(): P += plot_arc(radius, p, q, **triangulation_opts) if self.type() == 'D': s = radius / 50.0 P += polygon2d([(s, 5 * s), (s, 7 * s), (3 * s, 5 * s), (3 * s, 7 * s)], color=triangulation_opts['color']) P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)], [(2 * s, 10 * s), (s, 20 * s)], [(0, 30 * s), (0, radius)]], **triangulation_opts) P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)], [(-2 * s, 10 * s), (-s, 20 * s)], [(0, 30 * s), (0, radius)]], **triangulation_opts) P += point((0, 0), zorder=len(P), **points_opts) # Vertices v_points = {x: (radius * cos(vertex_to_angle(x)), radius * sin(vertex_to_angle(x))) for x in self.vertices()} for v in v_points: P += point(v_points[v], zorder=len(P), **points_opts) # Reflection axes P += line([(0, 1.1 * radius), (0, -1.1 * radius)], zorder=len(P), **reflections_opts) axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1]) (a, b) = (1.1 * radius * cos(axis_angle), 1.1 * radius * sin(axis_angle)) P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts) # Wrap up P.set_aspect_ratio(1) P.axes(False) return P
def plot(self, **kwds): r""" Plot the initial triangulation associated to ``self``. INPUT: - ``radius`` - the radius of the disk; by default the length of the circle is the number of vertices - ``points_color`` - the color of the vertices; default 'black' - ``points_size`` - the size of the vertices; default 7 - ``triangulation_color`` - the color of the arcs; default 'black' - ``triangulation_thickness`` - the thickness of the arcs; default 0.5 - ``shading_color`` - the color of the shading used on neuter intervals; default 'lightgray' - ``reflections_color`` - the color of the reflection axes; default 'blue' - ``reflections_thickness`` - the thickness of the reflection axes; default 1 EXAMPLES:: sage: Y = SineGordonYsystem('A',(6,4,3)); sage: Y.plot() # not tested """ # Set up plotting options if 'radius' in kwds: radius = kwds['radius'] else: radius = ceil(self.r() / (2 * pi)) points_opts = {} if 'points_color' in kwds: points_opts['color'] = kwds['points_color'] else: points_opts['color'] = 'black' if 'points_size' in kwds: points_opts['size'] = kwds['points_size'] else: points_opts['size'] = 7 triangulation_opts = {} if 'triangulation_color' in kwds: triangulation_opts['color'] = kwds['triangulation_color'] else: triangulation_opts['color'] = 'black' if 'triangulation_thickness' in kwds: triangulation_opts['thickness'] = kwds['triangulation_thickness'] else: triangulation_opts['thickness'] = 0.5 shading_opts = {} if 'shading_color' in kwds: shading_opts['color'] = kwds['shading_color'] else: shading_opts['color'] = 'lightgray' reflections_opts = {} if 'reflections_color' in kwds: reflections_opts['color'] = kwds['reflections_color'] else: reflections_opts['color'] = 'blue' if 'reflections_thickness' in kwds: reflections_opts['thickness'] = kwds['reflections_thickness'] else: reflections_opts['thickness'] = 1 # Helper functions def triangle(x): (a, b) = sorted(x[:2]) for p in self.vertices(): if (p, a) in self.triangulation() or (a, p) in self.triangulation(): if (p, b) in self.triangulation() or (b, p) in self.triangulation(): if p < a or p > b: return sorted((a, b, p)) def plot_arc(radius, p, q, **opts): # plot the arc from p to q differently depending on the type of self p = ZZ(p) q = ZZ(q) t = var('t') if p - q in [1, -1]: def f(t): return (radius * cos(t), radius * sin(t)) (p, q) = sorted([p, q]) angle_p = vertex_to_angle(p) angle_q = vertex_to_angle(q) return parametric_plot(f(t), (t, angle_q, angle_p), **opts) if self.type() == 'A': angle_p = vertex_to_angle(p) angle_q = vertex_to_angle(q) if angle_p < angle_q: angle_p += 2 * pi internal_angle = angle_p - angle_q if internal_angle > pi: (angle_p, angle_q) = (angle_q + 2 * pi, angle_p) internal_angle = angle_p - angle_q angle_center = (angle_p+angle_q) / 2 hypotenuse = radius / cos(internal_angle / 2) radius_arc = hypotenuse * sin(internal_angle / 2) center = (hypotenuse * cos(angle_center), hypotenuse * sin(angle_center)) center_angle_p = angle_p + pi / 2 center_angle_q = angle_q + 3 * pi / 2 def f(t): return (radius_arc * cos(t) + center[0], radius_arc * sin(t) + center[1]) return parametric_plot(f(t), (t, center_angle_p, center_angle_q), **opts) elif self.type() == 'D': if p >= q: q += self.r() px = -2 * pi * p / self.r() + pi / 2 qx = -2 * pi * q / self.r() + pi / 2 arc_radius = (px - qx) / 2 arc_center = qx + arc_radius def f(t): return exp(I * ((cos(t) + I * sin(t)) * arc_radius + arc_center)) * radius return parametric_plot((real_part(f(t)), imag_part(f(t))), (t, 0, pi), **opts) def vertex_to_angle(v): # v==0 corresponds to pi/2 return -2 * pi * RR(v) / self.r() + 5 * pi / 2 # Begin plotting P = Graphics() # Shade neuter intervals neuter_intervals = [x for x in flatten(self.intervals()[:-1], max_level=1) if x[2] in ["NR", "NL"]] shaded_triangles = map(triangle, neuter_intervals) for (p, q, r) in shaded_triangles: points = list(plot_arc(radius, p, q)[0]) points += list(plot_arc(radius, q, r)[0]) points += list(reversed(plot_arc(radius, p, r)[0])) P += polygon2d(points, **shading_opts) # Disk boundary P += circle((0, 0), radius, **triangulation_opts) # Triangulation for (p, q) in self.triangulation(): P += plot_arc(radius, p, q, **triangulation_opts) if self.type() == 'D': s = radius / 50.0 P += polygon2d([(s, 5 * s), (s, 7 * s), (3 * s, 5 * s), (3 * s, 7 * s)], color=triangulation_opts['color']) P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)], [(2 * s, 10 * s), (s, 20 * s)], [(0, 30 * s), (0, radius)]], **triangulation_opts) P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)], [(-2 * s, 10 * s), (-s, 20 * s)], [(0, 30 * s), (0, radius)]], **triangulation_opts) P += point((0, 0), zorder=len(P), **points_opts) # Vertices v_points = {x: (radius * cos(vertex_to_angle(x)), radius * sin(vertex_to_angle(x))) for x in self.vertices()} for v in v_points: P += point(v_points[v], zorder=len(P), **points_opts) # Reflection axes P += line([(0, 1.1 * radius), (0, -1.1 * radius)], zorder=len(P), **reflections_opts) axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1]) (a, b) = (1.1 * radius * cos(axis_angle), 1.1 * radius * sin(axis_angle)) P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts) # Wrap up P.set_aspect_ratio(1) P.axes(False) return P