コード例 #1
0
def spline_coeff(lat, time):

    time = time[~np.isnan(lat)]
    time_diff = time[1:]-time[:-1]
    counter = 0
    indeces_remotion = np.array([])
    for i in range(0, time_diff.shape[0]):

        if time_diff[i] > 60:
            if counter < 5:
                slack = np.arange(i - counter, i + 1)
                indeces_remotion = np.append(indeces_remotion, slack)

            counter = 0

        else:
            counter += 1
    time = np.delete(time, indeces_remotion)
    lat = lat[~np.isnan(lat)]
    lat = np.delete(lat, indeces_remotion)
    if lat.shape[0] > 5:
        save_data = optimal_knots(lat, time)
        t2 = time[save_data[1:-1]]
        try2 = LSQUnivariateSpline(time, lat, t2, k=3)
        spl_coeff = try2.get_coeffs()
        knots = np.r_[(time[save_data[0]],) * (3 + 1), t2, (time[save_data[-1]-1],) * (3 + 1)]
        return [spl_coeff, knots]  # in this case returns spline coeff and knots
    else:
        return ["not enough data", lat]  # in this case returns original data
コード例 #2
0
ファイル: splinetable.py プロジェクト: moddevices/guitarix
 def calc_coeffs(self):
     coeff = []
     for v, (g, kdata) in enumerate(zip(self.basegrid, self.knot_data)):
         ranges = [(slice(r[0], r[1], t[0] * 1j) if kd.used() else slice(
             (r[1] - r[0]) / 2.0, r[1], 1j))
                   for r, t, kd in zip(self.ranges, g[0], kdata)]
         fnc = self.calc_grid(ranges, g[1], g[2])[v]
         for n in range(len(ranges)):
             kd = self.knot_data[v, n]
             if not kd.used():
                 continue
             s = list(fnc.shape)
             s[n] = kd.num_coeffs()
             out = np.empty(s)
             s[n] = 1
             x = np.mgrid[ranges[n]]
             for i in np.ndindex(tuple(s)):
                 i = list(i)
                 i[n] = slice(None)
                 ss = LSQUnivariateSpline(x,
                                          fnc[i],
                                          kd.get_knots(),
                                          bbox=kd.get_bbox(),
                                          k=kd.get_order() - 1)
                 out[i] = ss.get_coeffs()
             fnc = out
         coeff.append(fnc)
     return coeff
コード例 #3
0
ファイル: splinetable.py プロジェクト: moddevices/guitarix
def b_ink(x, fnca, k):
    "return t, bcoef"
    ca = []
    for fnc in fnca:
        t = [None] * len(x)
        for n in range(len(x)):
            cf = np.empty_like(fnc)
            s = list(fnc.shape)
            s[n] = 1
            xx = x[n]
            xxe = xx[-1]
            xxe += (xxe - xx[-2]) * 0.1
            kk = k[n]
            start = kk // 2
            end = -(kk - start)
            knots = xx[start:end].copy()
            if kk % 2:
                knots[:-1] += knots[1:]
                knots[-1] += xx[end]
                knots *= 0.5
            for idx in np.ndindex(tuple(s)):
                idx = list(idx)
                idx[n] = slice(None)
                #ss = InterpolatedUnivariateSpline(x[n], fnc[idx], bbox=(xx[0],xxe), k=k[n]-1)
                ss = LSQUnivariateSpline(xx,
                                         fnc[idx],
                                         knots,
                                         bbox=(xx[0], xxe),
                                         k=kk - 1)
                cf[idx] = ss.get_coeffs()
            t[n] = np.pad(knots, kk, 'constant', constant_values=(xx[0], xxe))
            fnc = cf
        ca.append(fnc)
    return t, ca
コード例 #4
0
ファイル: splinetable.py プロジェクト: dafx/guitarix
def b_ink(x, fnca, k):
    "return t, bcoef"
    ca = []
    for fnc in fnca:
        t = [None]*len(x)
        for n in range(len(x)):
            cf = np.empty_like(fnc)
            s = list(fnc.shape)
            s[n] = 1
            xx = x[n]
            xxe = xx[-1]
            xxe += (xxe-xx[-2]) * 0.1
            kk = k[n]
            start = kk // 2
            end = -(kk - start)
            knots = xx[start:end].copy()
            if kk % 2:
                knots[:-1] += knots[1:]
                knots[-1] += xx[end]
                knots *= 0.5
            for idx in np.ndindex(tuple(s)):
                idx = list(idx)
                idx[n] = slice(None)
                #ss = InterpolatedUnivariateSpline(x[n], fnc[idx], bbox=(xx[0],xxe), k=k[n]-1)
                ss = LSQUnivariateSpline(xx, fnc[idx], knots, bbox=(xx[0],xxe), k=kk-1)
                cf[idx] = ss.get_coeffs()
            t[n] = np.pad(knots, kk, 'constant', constant_values=(xx[0],xxe))
            fnc = cf
        ca.append(fnc)
    return t, ca
コード例 #5
0
ファイル: splinetable.py プロジェクト: dafx/guitarix
 def calc_coeffs(self):
     coeff = []
     for v, (g, kdata) in enumerate(zip(self.basegrid, self.knot_data)):
         ranges = [(slice(r[0], r[1], t[0]*1j) if kd.used() else slice((r[1]-r[0])/2.0,r[1],1j)) for r, t, kd in zip(self.ranges,g[0],kdata)]
         fnc = self.calc_grid(ranges, g[1], g[2])[v]
         for n in range(len(ranges)):
             kd = self.knot_data[v,n]
             if not kd.used():
                 continue
             s = list(fnc.shape)
             s[n] = kd.num_coeffs()
             out = np.empty(s)
             s[n] = 1
             x = np.mgrid[ranges[n]]
             for i in np.ndindex(tuple(s)):
                 i = list(i)
                 i[n] = slice(None)
                 ss = LSQUnivariateSpline(x, fnc[i], kd.get_knots(), bbox=kd.get_bbox(), k=kd.get_order()-1)
                 out[i] = ss.get_coeffs()
             fnc = out
         coeff.append(fnc)
     return coeff
コード例 #6
0
ファイル: gfit.py プロジェクト: pyrrho314/recipesystem
    def fit_cubic(self):
        """Fit (x,y) arrays using a cubic Spline approximation.
           It uses LSQUnivariateSpline from scipy.interpolate
           which uses order-1 knots.
           

        """

        x = self.x
        y = self.y
        xmin,xmax = x.min(),x.max()
        npieces = self.order

        rn = (xmax - xmin)/npieces 
        tn = [(xmin+rn*k) for k in range(1,npieces)]
        zu = LSQUnivariateSpline(x,y,tn)
        
        self.coeff = zu.get_coeffs()
        self.fx = lambda x: x
        self.evfunc = lambda p,x: zu(x)
        self.ier = None
       
        return
コード例 #7
0
ファイル: trace_aperture.py プロジェクト: carleen/plp
        m = (xmin <= t) & (t <= xmax)
        m1 = ni.maximum_filter1d(m, 3)
        t1 = t[m1]

        spl = LSQUnivariateSpline(x1, y1,
                                  t1[1:-1], bbox = [t1[0], t1[-1]])

        spl = LSQUnivariateSpline(x1, y1,
                                  t2[1:-3], bbox = [t2[0], t2[-3]])

        coeffs = np.empty(len(t)+2, dtype="f")
        coeffs.fill(np.nan)

        if np.all(m1):
            coeffs[:] = spl.get_coeffs()
        else:
            coeffs[1:-1][m1] = spl.get_coeffs()[1:-1]

        coeffs_list.append([coeffs])
        print len(spl.get_knots()), len(spl.get_coeffs())
        plot(x1, y1)
        plot(xx, spl(xx))
    aa = np.concatenate(coeffs_list, axis=0)




    aaf = np.empty_like(aa)
    tt = np.arange(aa.shape[0])
    for ix in range(aa.shape[-1]):
コード例 #8
0
ファイル: trace_aperture.py プロジェクト: njmiller/plp
        m = (xmin <= t) & (t <= xmax)
        m1 = ni.maximum_filter1d(m, 3)
        t1 = t[m1]

        spl = LSQUnivariateSpline(x1, y1,
                                  t1[1:-1], bbox = [t1[0], t1[-1]])

        spl = LSQUnivariateSpline(x1, y1,
                                  t2[1:-3], bbox = [t2[0], t2[-3]])

        coeffs = np.empty(len(t)+2, dtype="f")
        coeffs.fill(np.nan)

        if np.all(m1):
            coeffs[:] = spl.get_coeffs()
        else:
            coeffs[1:-1][m1] = spl.get_coeffs()[1:-1]

        coeffs_list.append([coeffs])
        print len(spl.get_knots()), len(spl.get_coeffs())
        plot(x1, y1)
        plot(xx, spl(xx))
    aa = np.concatenate(coeffs_list, axis=0)




    aaf = np.empty_like(aa)
    tt = np.arange(aa.shape[0])
    for ix in range(aa.shape[-1]):
コード例 #9
0
    y1 = np.concatenate(
        (np.zeros(shape=len(arg1) // 10), y1, np.zeros(shape=len(arg1) // 10)))
    s1 = psf_ref['sig_y'][i].flatten()[arg1]
    s1 = np.concatenate((np.average(s1) * np.ones(shape=len(arg1) // 10), s1,
                         np.average(s1) * np.ones(shape=len(arg1) // 10)))
    ym1 = median_filter(y1, size=len(y1) // 20)
    res1 = y1 - ym1
    rms1 = rmsd(y1, ym1)
    mask1 = abs(res1) > 3.0 * rms1
    x2 = x1[~mask1]
    y2 = y1[~mask1]
    s2 = s1[~mask1]
    ya2 = uniform_filter1d(y2, size=len(y2) // 20)

    splines2 = LSQUnivariateSpline(x2, y2, t=knots, bbox=[xb, xe], k=deg2)
    tck_coeffs1 = np.append(tck_coeffs1, [splines2.get_coeffs()], axis=0)

    ax1 = plt.Axes(
        fig, [subfig_left[flag1 % 3], subfig_bottom[flag1 // 3], 0.25, 0.13])
    fig.add_axes(ax1)
    ax1.errorbar(x1[mask1],
                 y1[mask1],
                 yerr=s1[mask1],
                 fmt='r.',
                 ms=6,
                 zorder=0,
                 alpha=0.5)
    ax1.errorbar(x2,
                 y2,
                 yerr=s2,
                 fmt='.',