def setUp(self): self.locs = [[0, 0, 1], [1, 0, 0], [0, 1, 0], [-1, 0, 0], [0, -1, 0]] self.vals = [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]] self.topo = Topoplot() self.topo.set_locations(self.locs) self.maps = sp.prepare_topoplots(self.topo, self.vals)
# # Extract the full frequency directed transfer function (ffDTF) from the # activations of each class and calculate the average value over the alpha band (8-12Hz). freq = np.linspace(0, fs, ws.nfft_) alpha, beta = {}, {} for c in np.unique(classes): ws.set_used_labels([c]) ws.fit_var() con = ws.get_connectivity('ffDTF') alpha[c] = np.mean(con[:, :, np.logical_and(8 < freq, freq < 12)], axis=2) # Prepare topography plots topo = Topoplot() topo.set_locations(locs) mixmaps = plotting.prepare_topoplots(topo, ws.mixing_) # Force diagonal (self-connectivity) to 0 np.fill_diagonal(alpha['hand'], 0) np.fill_diagonal(alpha['foot'], 0) order = None for cls in ['hand', 'foot']: np.fill_diagonal(alpha[cls], 0) w = alpha[cls] m = alpha[cls] > 4 # use same ordering of components for each class if not order: order = cuthill_mckee(m)
# Extract the full frequency directed transfer function (ffDTF) from the # activations of each class and calculate the average value over the alpha band # (8-12 Hz). freq = np.linspace(0, fs, ws.nfft_) alpha, beta = {}, {} for c in np.unique(classes): ws.set_used_labels([c]) ws.fit_var() con = ws.get_connectivity('ffDTF') alpha[c] = np.mean(con[:, :, np.logical_and(8 < freq, freq < 12)], axis=2) # Prepare topography plots topo = Topoplot() topo.set_locations(locs) mixmaps = plotting.prepare_topoplots(topo, ws.mixing_) # Force diagonal (self-connectivity) to 0 np.fill_diagonal(alpha['hand'], 0) np.fill_diagonal(alpha['foot'], 0) order = None for cls in ['hand', 'foot']: np.fill_diagonal(alpha[cls], 0) w = alpha[cls] m = alpha[cls] > 4 # use same ordering of components for each class if not order: order = cuthill_mckee(m)