コード例 #1
0
ファイル: linear_elasticity.py プロジェクト: qilicun/sfepy
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet")

    field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
コード例 #2
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print(nls_status)

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
コード例 #3
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d', '--dims', metavar='dims',
                        action='store', dest='dims',
                        default='[1.0, 1.0]', help=helps['dims'])
    parser.add_argument('-c', '--centre', metavar='centre',
                        action='store', dest='centre',
                        default='[0.0, 0.0]', help=helps['centre'])
    parser.add_argument('-s', '--shape', metavar='shape',
                        action='store', dest='shape',
                        default='[11, 11]', help=helps['shape'])
    parser.add_argument('-b', '--bc-kind', metavar='kind',
                        action='store', dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free', help=helps['bc_kind'])
    parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1',
                        type=int, action='store', dest='axis',
                        default=-1, help=helps['axis'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=6.80e+10, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.36, help=helps['poisson'])
    parser.add_argument('--density', metavar='float', type=float,
                        action='store', dest='density',
                        default=2700.0, help=helps['density'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    parser.add_argument('-i', '--ignore', metavar='int', type=int,
                        action='store', dest='ignore',
                        default=None, help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('filename', nargs='?', default=None)
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')
    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e'
               % (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]),
                    dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg', verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements',
                                    ['rel_scaling=%s' % scaling,
                                     'color_kind="tensors"',
                                     'color_name="strain%03d"' % ii])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds, only_names=sorted(ds.keys()),
             is_scalar_bar=False, is_wireframe=True)
コード例 #4
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()
    options_probe = True


    folder = str(uuid.uuid4())
    os.mkdir(folder)
    os.chdir(folder)

    file = open('README.txt', 'w')
    file.write('DIMENSIONS\n')
    file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n')
    file.write('DISCRETIZATION (NX, NY, NZ)\n')
    file.write(str(NX)+'  '+str(NY)+'  '+str(NZ)+'\n')
    file.write('MATERIALS\n')
    file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n')

    #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')

    mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    min_y, max_y = domain.get_mesh_bounding_box()[:,1]
    min_z, max_z = domain.get_mesh_bounding_box()[:,2]
    eps = 1e-8 * (max_x - min_x)
    print min_x, max_x
    print min_y, max_y
    print min_z, max_z
    R1 = domain.create_region('Ym',
                                  'vertices in z < %.10f' % (max_z/2))
    R2 = domain.create_region('Yf',
                                  'vertices in z >= %.10f' % (min_z/2))
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Left',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Right',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Front',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Back',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')
    gamma5 = domain.create_region('Bottom',
                                  'vertices in z < %.10f' % (min_z + eps),
                                  'facet')
    gamma6 = domain.create_region('Top',
                                  'vertices in z > %.10f' % (max_z - eps),
                                  'facet')



    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    mu=1.1
    lam=1.0
    m = Material('m', lam=lam, mu=mu)
    f = Material('f', val=[[0.0], [0.0],[-1.0]])
    load = Material('Load',val=[[0.0],[0.0],[-Load]])

    D = stiffness_from_lame(3,lam, mu)
    mat = Material('Mat', D=D)

    get_mat = Function('get_mat1',get_mat1)
    get_mat_f = Function('get_mat_f',get_mat1)

    integral = Integral('i', order=3)
    s_integral = Integral('is',order=2)

    t1 = Term.new('dw_lin_elastic(Mat.D, v, u)',
         integral, omega, Mat=mat, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    #t3 = Term.new('DotProductSurfaceTerm(Load.val, v)',s_integral,gamma5,Load=load,v=v)
    t3 = Term.new('dw_surface_ltr( Load.val, v )',s_integral,gamma6,Load=load,v=v)
    eq = Equation('balance', t1 + t2 + t3)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
    left_bc  = EssentialBC('Left',  gamma1, {'u.0' : 0.0})
    right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0})
    back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0})
    front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0})
    bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0})
    top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2})

    bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc]
    #bc=[bottom_bc,top_bc]


    ##############################
    #  ##### SOLVER SECTION  #####
    ##############################

    conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
                  i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4,
                  verbose=True)

    ls = PETScKrylovSolver(conf)

    file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' )

    nls_status = IndexedStruct()
    nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    dd=pb.get_materials()['Mat']
    dd.set_function(get_mat1)
    #xload = pb.get_materials()['f']
    #xload.set_function(get_mat_f)

    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions(bc))

    vec = pb.solve()
    print nls_status


    file.write('TIME TO SOLVE\n')
    file.write(str(nls.status.time_stats['solve'])+'\n')
    file.write('TIME TO CREATE MATRIX\n')
    file.write(str(nls.status.time_stats['matrix'])+'\n')

    ev = pb.evaluate
    out = vec.create_output_dict()
    strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg')
    stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg',
                copy_materials=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain, dofs=None)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress, dofs=None)

    pb.save_state('strain.vtk', out=out)

    print nls_status


    file.close()
コード例 #5
0
def main():
    from sfepy import data_dir

    parser = ArgumentParser()
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    options = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun,
                      extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print(nls_status)

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('-b',
                        '--bc-kind',
                        metavar='kind',
                        action='store',
                        dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free',
                        help=helps['bc_kind'])
    parser.add_argument('-a',
                        '--axis',
                        metavar='0, ..., dim, or -1',
                        type=int,
                        action='store',
                        dest='axis',
                        default=-1,
                        help=helps['axis'])
    parser.add_argument('--young',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='young',
                        default=200e+9,
                        help=helps['young'])
    parser.add_argument('--poisson',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='poisson',
                        default=0.3,
                        help=helps['poisson'])
    parser.add_argument('--density',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='density',
                        default=7800.0,
                        help=helps['density'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('-i',
                        '--ignore',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='ignore',
                        default=None,
                        help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    #parser.add_argument('filename', nargs='?', default=None)
    #read block.mesh
    #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh")
    parser.add_argument('filename', nargs='?', default="block_1m.mesh")
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    """
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')

    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')
    """
    #import pdb; pdb.set_trace()
    left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)
    """
    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) // 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore
    """
    fixed = EssentialBC('Fixed', left, {'u.all': 0.0})
    pb.time_update(ebcs=Conditions([fixed]))
    n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k,
                                 mtx_m,
                                 options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e' %
               (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
コード例 #7
0
set_bc_fun = Function('set_bc_impl', set_bc_impl)
bc1 = EssentialBC('Gamma_Left', gammaL, {'t.0': set_bc_fun})
bc2 = EssentialBC('Gamma_Right', gammaR, {'t.0': set_bc_fun})

bc3 = EssentialBC('Gamma_Top', gammaT, {'t.0': set_bc_fun})
bc4 = EssentialBC('Gamma_Bottom', gammaB, {'t.0': set_bc_fun})

ls = ScipyDirect({})

nls_status = IndexedStruct()
newtonConfig = {'i_max': 10, 'eps_a': 1e-10, 'eps_r': 1}
nls = Newton(newtonConfig, lin_solver=ls, status=nls_status)

pb = Problem('Poisson', equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups('regions')

# pb.time_update(ebcs=Conditions([fix_u, t1, t2]))
pb.time_update(ebcs=Conditions([bc1, bc2, bc3, bc4]))

vec = pb.solve()
print nls_status

pb.save_state('customCylinder.vtk', vec)

# if options.show:
# view = Viewer('customCylinder.vtk')
# view(vector_mode='warp_norm', rel_scaling=2,
#      is_scalar_bar=True, is_wireframe=True)

solutionData = vec.vec.reshape(100, 100)
コード例 #8
0
    def _solve(self, property_array):
        """
        Solve the Sfepy problem for one sample.

        Args:
          property_array: array of shape (Nx, Ny, 2) where the last
          index is for Lame's parameter and shear modulus,
          respectively.

        Returns:
          the strain field of shape (Nx, Ny, 2) where the last
          index represents the x and y displacements

        """
        shape = property_array.shape[:-1]
        mesh = self._get_mesh(shape)
        domain = Domain('domain', mesh)

        region_all = domain.create_region('region_all', 'all')

        field = Field.from_args('fu',
                                np.float64,
                                'vector',
                                region_all,
                                approx_order=2)

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = self._get_material(property_array, domain)

        integral = Integral('i', order=4)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral,
                      region_all,
                      m=m,
                      v=v,
                      u=u)
        eq = Equation('balance_of_forces', t1)
        eqs = Equations([eq])

        epbcs, functions = self._get_periodicBCs(domain)
        ebcs = self._get_displacementBCs(domain)
        lcbcs = self._get_linear_combinationBCs(domain)

        ls = ScipyDirect({})

        pb = Problem('elasticity', equations=eqs, auto_solvers=None)
        pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=ebcs,
                       epbcs=epbcs,
                       lcbcs=lcbcs,
                       functions=functions)

        ev = pb.get_evaluator()
        nls = Newton({},
                     lin_solver=ls,
                     fun=ev.eval_residual,
                     fun_grad=ev.eval_tangent_matrix)

        pb.set_solvers_instances(ls, nls)

        vec = pb.solve()

        u = vec.create_output_dict()['u'].data
        u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))

        dims = domain.get_mesh_bounding_box().shape[1]
        strain = np.squeeze(
            pb.evaluate(
                'ev_cauchy_strain.{dim}.region_all(u)'.format(dim=dims),
                mode='el_avg'))
        strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))

        stress = np.squeeze(
            pb.evaluate(
                'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(dim=dims),
                mode='el_avg'))
        stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))

        return strain_reshape, u_reshape, stress_reshape
コード例 #9
0
    def _solve(self, property_array):
        """
        Solve the Sfepy problem for one sample.

        Args:
          property_array: array of shape (Nx, Ny, 2) where the last
          index is for Lame's parameter and shear modulus,
          respectively.

        Returns:
          the strain field of shape (Nx, Ny, 2) where the last
          index represents the x and y displacements

        """
        shape = property_array.shape[:-1]
        mesh = self._get_mesh(shape)
        domain = Domain('domain', mesh)

        region_all = domain.create_region('region_all', 'all')

        field = Field.from_args('fu', np.float64, 'vector', region_all,
                                approx_order=2)

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = self._get_material(property_array, domain)

        integral = Integral('i', order=4)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, region_all, m=m, v=v, u=u)
        eq = Equation('balance_of_forces', t1)
        eqs = Equations([eq])

        epbcs, functions = self._get_periodicBCs(domain)
        ebcs = self._get_displacementBCs(domain)
        lcbcs = self._get_linear_combinationBCs(domain)

        ls = ScipyDirect({})

        pb = Problem('elasticity', equations=eqs, auto_solvers=None)
        pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions)

        ev = pb.get_evaluator()
        nls = Newton({}, lin_solver=ls,
                     fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

        pb.set_solvers_instances(ls, nls)

        vec = pb.solve()

        u = vec.create_output_dict()['u'].data
        u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))

        dims = domain.get_mesh_bounding_box().shape[1]
        strain = np.squeeze(pb.evaluate('ev_cauchy_strain.{dim}.region_all(u)'.format(dim=dims),
                                        mode='el_avg'))
        strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))

        stress = np.squeeze(pb.evaluate('ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(dim=dims),
                                        mode='el_avg'))
        stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))

        return strain_reshape, u_reshape, stress_reshape
コード例 #10
0
ファイル: linear_elastic.py プロジェクト: adantra/Arma_paper
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()
    options_probe = True
    folder = str(uuid.uuid4())
    os.mkdir(folder)
    os.chdir(folder)
    
    file = open('README.txt', 'w')
    file.write('DIMENSIONS\n')
    file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n')
    file.write('DISCRETIZATION (NX, NY, NZ)\n')
    file.write(str(NX)+'  '+str(NY)+'  '+str(NZ)+'\n')
    file.write('MATERIALS\n')
    file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n')
    
    #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    
    mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    min_y, max_y = domain.get_mesh_bounding_box()[:,1]
    min_z, max_z = domain.get_mesh_bounding_box()[:,2]
    eps = 1e-8 * (max_x - min_x)
    print min_x, max_x
    print min_y, max_y
    print min_z, max_z
    R1 = domain.create_region('Ym',
                                  'vertices in z < %.10f' % (max_z/2))
    R2 = domain.create_region('Yf',
                                  'vertices in z >= %.10f' % (min_z/2))
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Left',
                                  'vertices in x < %.10f' % (min_x + eps), 
                                  'facet')
    gamma2 = domain.create_region('Right',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Front',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Back',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')
    gamma5 = domain.create_region('Bottom',
                                  'vertices in z < %.10f' % (min_z + eps),
                                  'facet')
    gamma6 = domain.create_region('Top',
                                  'vertices in z > %.10f' % (max_z - eps),
                                  'facet')



    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    mu=1.1
    lam=1.0
    m = Material('m', lam=lam, mu=mu)
    f = Material('f', val=[[0.0], [0.0],[0.0]])
    #mu,lam=m.get_constants_mu_lam()
    #print mu.lam 
    D = stiffness_from_lame(3,lam, mu)    
    mat = Material('Mat', D=D)

    #D = stiffness_from_youngpoisson(2, options.young, options.poisson)
    get_mat = Function('get_mat1',get_mat1)
    #get_mat1=Function('get_mat', (lambda ts, coors, mode=None, problem=None, **kwargs:
    #                get_mat(coors, mode, problem)))
    #mat = Material('Mat', function=Function('get_mat1',get_mat1))
    #mat = Material('Mat', 'get_mat')
    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(Mat.D, v, u)',
         integral, omega, Mat=mat, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
    left_bc  = EssentialBC('Left',  gamma1, {'u.0' : 0.0})
    right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0})
    back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0})
    front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0})
    bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0})
    top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2})

    bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc,top_bc]
    #bc=[bottom_bc,top_bc]

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})
    #get_mat = Function('get_mat1',get_mat1)
    #mat = Material('Mat', function=Function('get_mat1',get_mat1))
    #ls = ScipyDirect({'method':'umfpack'})
    ##############################
    #  ##### SOLVER SECTION  #####
    ##############################
    
    # GET MATRIX FOR PRECONTITIONER #
    
    
    #ls = ScipyIterative({'method':'bicgstab','i_max':5000,'eps_r':1e-10})
    #ls = ScipyIterative({})
    
#ls = PyAMGSolver({'i_max':5000,'eps_r':1e-10})
#conf = Struct(method='cg', precond='gamg', sub_precond=None,i_max=10000, eps_a=1e-50, eps_r=1e-5, eps_d=1e4, verbose=True)
    #ls = PETScKrylovSolver({'method' : 'cg', 'precond' : 'icc', 'eps_r' : 1e-10, 'i_max' : 5000})
    conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
                  i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4,
                  verbose=True)
                  #conf = Struct(method = 'cg', precond = 'icc', eps_r = 1e-10, i_max = 5000)
    ls = PETScKrylovSolver(conf)
#if hasattr(ls.name,'ls.scipy_iterative'):
    file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' )
        #    else:
#file.write(str(ls.name)+' '+str(ls.conf.method)+'\n')



   
   
   # conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
   #                 i_max=10000, eps_a=1e-50, eps_r=1e-8, eps_d=1e4,
#              verbose=True)
            
                 
                 
#ls = PETScKrylovSolver(conf)



#ls = ScipyIterative({'method':'bicgstab','i_max':100,'eps_r':1e-10})


    nls_status = IndexedStruct()
    nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    


    dd=pb.get_materials()['Mat']
    dd.set_function(get_mat1)
    
    
    pb.save_regions_as_groups('regions')

    #pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    pb.time_update(ebcs=Conditions(bc))
    pb.save_regions_as_groups('regions')

#ls = ScipyIterative({'method':'bicgstab','i_max':100,'eps_r':1e-10})


#   A = pb.mtx_a
#   M = spilu(A,fill_factor = 1)
    
    #conf = Struct(solvers ='ScipyIterative',method='bcgsl', sub_precond=None,
# i_max=1000, eps_r=1e-8)
        
#pb.set_conf_solvers(conf)
    vec = pb.solve()
    print nls_status
    file.write('TIME TO SOLVE\n')
    file.write(str(nls.status.time_stats['solve'])+'\n')
    file.write('TIME TO CREATE MATRIX\n')
    file.write(str(nls.status.time_stats['matrix'])+'\n')
    #out = post_process(out, pb, state, extend=False)
    ev = pb.evaluate
    out = vec.create_output_dict()
    strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg')
    stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg',
                copy_materials=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain, dofs=None)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress, dofs=None)


    # Postprocess the solution.
    #out = vec.create_output_dict()
    #out = stress_strain(out, pb, vec,lam,mu, extend=True)
    #pb.save_state('its2D_interactive.vtk', out=out)
    #print 'aqui estoy'
    pb.save_state('strain.vtk', out=out)
    #pb.save_state('disp.vtk', out=vec)
    #print 'ahora estoy aqui'
    #out = stress_strain(out, pb, vec, extend=True)
    #pb.save_state('out.vtk', out=out)
    print nls_status
    
    order = 3
    strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
    stress_qp = ev('ev_cauchy_stress.%d.Omega(Mat.D, u)' % order,
                       mode='qp', copy_materials=False)

    file.close()
    options_probe=False
    if options_probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)
        nls_options = {'eps_a':1e-8,'i_max':1}
        ls = ScipyDirect({})
        ls2 = ScipyIterative({'method':'bicgstab','i_max':5000,'eps_r':1e-20})
        order = 5
        sfield = Field.from_args('sym_tensor', nm.float64, (3,), omega,
                                approx_order=order-1)
        stress = FieldVariable('stress', 'parameter', sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain', 'parameter', sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component', nm.float64, 1, omega,
                                 approx_order=order-1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2*(order - 1) #2 * (2- 1)
        print "before strain_qp"
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Mat.D, u)' % order,
                       mode='qp', copy_materials=False)
        print "before projections"
        print stress
        project_by_component(strain, strain_qp, component, order,ls2,nls_options)
        #print 'strain done'
        project_by_component(stress, stress_qp, component, order,ls2,nls_options)

        print "after projections"
        
        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results2(u, strain, stress, probe, labels[ii])

            fig.savefig('test_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                       % (val.min(), val.mean(), val.max()))
            output.level -= 2
コード例 #11
0
ファイル: modal_analysis.py プロジェクト: marcinch18/sfepy
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-d',
                      '--dims',
                      metavar='dims',
                      action='store',
                      dest='dims',
                      default='[1.0, 1.0]',
                      help=helps['dims'])
    parser.add_option('-c',
                      '--centre',
                      metavar='centre',
                      action='store',
                      dest='centre',
                      default='[0.0, 0.0]',
                      help=helps['centre'])
    parser.add_option('-s',
                      '--shape',
                      metavar='shape',
                      action='store',
                      dest='shape',
                      default='[11, 11]',
                      help=helps['shape'])
    parser.add_option('-b',
                      '--bc-kind',
                      metavar='kind',
                      action='store',
                      dest='bc_kind',
                      choices=['free', 'clamped'],
                      default='free',
                      help=helps['bc_kind'])
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=6.80e+10,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.36,
                      help=helps['poisson'])
    parser.add_option('--density',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='density',
                      default=2700.0,
                      help=helps['density'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-n',
                      '--n-eigs',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='n_eigs',
                      default=6,
                      help=helps['order'])
    parser.add_option('',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    dims = nm.array(eval(options.dims), dtype=nm.float64)
    dim = len(dims)
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

    output('dimensions:', dims)
    output('centre:    ', centre)
    output('shape:     ', shape)
    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)

    # Build the problem definition.
    mesh = gen_block_mesh(dims, shape, centre, name='mesh')
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_y - min_y)
    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (y < %.10f)' % (min_y + eps),
                                  'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    else:
        fixed_b = EssentialBC('FixedB', bottom, {'u.all': 0.0})
        pb.time_update(ebcs=Conditions([fixed_b]))
        n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = sla.eigsh(mtx_k,
                                k=options.n_eigs + n_rbm,
                                M=mtx_m,
                                which='SM',
                                tol=1e-5,
                                maxiter=10000)
    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    output('eigenvalues:', eigs)
    output('eigen-frequencies:', nm.sqrt(eigs))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in xrange(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in xrange(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in xrange(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)