コード例 #1
0
ファイル: modal.py プロジェクト: bbbales2/modal
def evalValAndDeriv(D):
    m = Material('m', D = D, rho = 2700.0)

    integral = Integral('i', order=2)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations = lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM')

    eigs = eigs0[3:]
    evecs = evecs0[:, 3:]

    dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])])
    dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])])

    return eigs, dydmu, dydlambda
コード例 #2
0
ファイル: match.py プロジェクト: bbbales2/modal
def assemble(mtx_d):
    m = Material('m', D=mtx_d, rho=density)

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    tmp = time.time()
    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    return mtx_k, mtx_m
コード例 #3
0
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0' : 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0' : 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0' : 'u.0'},
                               dof_map_fun, 'shifted_periodic',
                               arguments=(shift_fun,))

    ls = ScipyDirect({})

    pb = Problem('laplace', equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls,
                 fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
コード例 #4
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.discrete import (FieldVariable, Material, Problem, Function,
                                    Equation, Equations, Integral)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton
        from sfepy.mechanics.matcoefs import stiffness_from_lame

        u = FieldVariable('u', 'unknown', self.field)
        v = FieldVariable('v', 'test', self.field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0))
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
        ## pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=Conditions([fix_u, shift_u]))

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
コード例 #5
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val': val, 'gval': gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
コード例 #6
0
ファイル: linear_elasticity.py プロジェクト: qilicun/sfepy
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet")

    field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
コード例 #7
0
def solve_problem(shape, dims, young, poisson, force, transform=None):
    domain = make_domain(dims[:2], shape, transform=transform)

    omega = domain.regions['Omega']
    gamma1 = domain.regions['Gamma1']
    gamma2 = domain.regions['Gamma2']

    field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
                            poly_space_base='shell10x')
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    thickness = dims[2]
    if transform is None:
        pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'bend':
        pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'twist':
        pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]

    m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
                 values={'.drill' : 1e-7})
    load = Material('load', values={'.val' : pload})

    aux = Integral('i', order=3)
    qp_coors, qp_weights = aux.get_qp('3_8')
    qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
    qp_weights *= thickness

    integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')

    t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_point_load(load.val, v)',
                  integral, gamma2, load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([fix_u]))

    state = pb.solve()

    return pb, state, u, gamma2
コード例 #8
0
def run(domain, order):
    omega = domain.create_region("Omega", "all")
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps), "facet")
    gamma3 = domain.create_region("Gamma3", "vertices in y < %.10f" % (min_y + eps), "facet")
    gamma4 = domain.create_region("Gamma4", "vertices in y > %.10f" % (max_y - eps), "facet")

    field = Field.from_args("fu", nm.float64, 1, omega, approx_order=order)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    integral = Integral("i", order=2 * order)

    t1 = Term.new("dw_laplace(v, u)", integral, omega, v=v, u=u)
    eq = Equation("eq", t1)
    eqs = Equations([eq])

    fix1 = EssentialBC("fix1", gamma1, {"u.0": 0.4})
    fix2 = EssentialBC("fix2", gamma2, {"u.0": 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function("dof_map_fun", per.match_x_line)
    shift_fun = Function("shift_fun", get_shift)

    sper = LinearCombinationBC(
        "sper", [gamma3, gamma4], {"u.0": "u.0"}, dof_map_fun, "shifted_periodic", arguments=(shift_fun,)
    )

    ls = ScipyDirect({})

    pb = Problem("laplace", equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
コード例 #9
0
ファイル: test_conditions.py プロジェクト: uberstig/sfepy
    def test_save_ebc(self):
        from sfepy.discrete import (FieldVariable, Integral, Equation,
                                    Equations, Problem)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term

        name = op.join(self.options.out_dir,
                       op.splitext(op.basename(__file__))[0])

        integral = Integral('i', order=1)

        u = self.variables['u']
        v = FieldVariable('v', 'test', u.field, primary_var_name='u')

        p = self.variables['p']
        q = FieldVariable('q', 'test', p.field, primary_var_name='p')

        regions = self.problem.domain.regions
        omega = regions['Omega']

        # Problem.save_ebc() requires to have equations defined.
        t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u)
        t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
        eq = Equation('aux', t1 + t2)
        eqs = Equations([eq])

        pb = Problem('test', equations=eqs, auto_solvers=False)

        all_ebcs = []
        all_ebcs.append(
            EssentialBC('fix_u1', regions['RightFix'],
                        {'u.all': nm.array([0.0, 1.0])}))
        all_ebcs.append(
            EssentialBC('fix_u2', regions['LeftStrip'], {
                'u.0': 0.0,
                'u.1': 1.0
            }))
        all_ebcs.append(
            EssentialBC('fix_p1', regions['LeftFix'], {'p.all': 0.0}))
        all_ebcs.append(
            EssentialBC('fix_p2', regions['RightStrip'], {'p.0': 0.0}))
        ebcs = Conditions(all_ebcs)

        pb.time_update(ebcs=ebcs)

        pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True)
        pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False)

        return True
コード例 #10
0
ファイル: test_conditions.py プロジェクト: Gkdnz/sfepy
    def test_save_ebc(self):
        from sfepy.discrete import (FieldVariable, Integral,
                                    Equation, Equations, Problem)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term

        name = op.join(self.options.out_dir,
                       op.splitext(op.basename(__file__))[0])

        integral = Integral('i', order=1)

        u = self.variables['u']
        v = FieldVariable('v', 'test', u.field, primary_var_name='u')

        p = self.variables['p']
        q = FieldVariable('q', 'test', p.field, primary_var_name='p')

        regions = self.problem.domain.regions
        omega = regions['Omega']

        # Problem.save_ebc() requires to have equations defined.
        t1 = Term.new('dw_lin_elastic(v, u)',
                      integral, omega, v=v, u=u)
        t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
        eq = Equation('aux', t1 + t2)
        eqs = Equations([eq])

        pb = Problem('test', equations=eqs, auto_solvers=False)

        all_ebcs = []
        all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'],
                                    {'u.all' : nm.array([0.0, 1.0])}))
        all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
                                    {'u.0' : 0.0, 'u.1' : 1.0}))
        all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'],
                                    {'p.all' : 0.0}))
        all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
                                    {'p.0' : 0.0}))
        ebcs = Conditions(all_ebcs)

        pb.time_update(ebcs=ebcs)

        pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True)
        pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False)

        return True
コード例 #11
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val' : val, 'gval' : gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                    m=m, v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
                    m=m, v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
コード例 #12
0
def linear_projection(pb, cval):
    from sfepy.discrete import (FieldVariable, Material, Integral, Equation,
                                Equations, Problem)
    from sfepy.discrete.fem import Mesh, FEDomain, Field
    from sfepy.terms import Term
    from sfepy.solvers.ls import ScipyDirect
    from sfepy.solvers.nls import Newton
    from sfepy.base.base import IndexedStruct

    mesh = Mesh.from_file(pb.conf.filename_mesh)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1)

    g = FieldVariable('g', 'unknown', field)
    f = FieldVariable('f', 'test', field, primary_var_name='g')

    integral = Integral('i', order=2)
    m = Material('m', function=set_grad)

    t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
    t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])
    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)
    pb = Problem('elasticity', equations=eqs)
    pb.set_solver(nls)

    out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64)
    for ii in range(cval.shape[2]):
        pb.data = nm.ascontiguousarray(cval[:, :, ii, :])
        pb.time_update()
        state = pb.solve()
        out[:, ii] = state.get_parts()['g']

    return out
コード例 #13
0
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)' %
                                      (min_x + eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)' %
                                      (max_x - eps_x),
                                      'facet',
                                      allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2 * order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral,
                  omega_i,
                  m=mat,
                  v_i=v_i,
                  u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral,
                  omega_i,
                  load=load,
                  v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
コード例 #14
0
ファイル: its2D_interactive.py プロジェクト: Nasrollah/sfepy
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young', metavar='float', type=float,
                      action='store', dest='young',
                      default=2000.0, help=helps['young'])
    parser.add_option('--poisson', metavar='float', type=float,
                      action='store', dest='poisson',
                      default=0.4, help=helps['poisson'])
    parser.add_option('--load', metavar='float', type=float,
                      action='store', dest='load',
                      default=-1000.0, help=helps['load'])
    parser.add_option('--order', metavar='int', type=int,
                      action='store', dest='order',
                      default=1, help=helps['order'])
    parser.add_option('-r', '--refine', metavar='int', type=int,
                      action='store', dest='refine',
                      default=0, help=helps['refine'])
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=helps['show'])
    parser.add_option('-p', '--probe',
                      action="store_true", dest='probe',
                      default=False, help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom',
                                  'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val' : [0.0, options.load]})

    integral = Integral('i', order=2*options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral, omega, Asphalt=asphalt, v=v, u=u)
    t2 = Term.new('dw_point_load(Load.val, v)',
                  integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
    ysym = EssentialBC('YSym', left, {'u.0' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn', coors=gdata.coors,
                          weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
                                approx_order=options.order - 1)
        stress = FieldVariable('stress', 'parameter', sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain', 'parameter', sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component', nm.float64, 1, omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp', copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                       % (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm', rel_scaling=1,
             is_scalar_bar=True, is_wireframe=True)
コード例 #15
0
def make_l2_projection_data(target,
                            eval_data,
                            order=None,
                            ls=None,
                            nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
        order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name,
                   integral,
                   un.field.region,
                   v=v,
                   **{un.name: un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val': val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)',
                   integral,
                   un.field.region,
                   m=m,
                   v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
コード例 #16
0
ファイル: time_poisson_interactive.py プロジェクト: rc/sfepy
def main():
    from sfepy import data_dir

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('--diffusivity', metavar='float', type=float,
                        action='store', dest='diffusivity',
                        default=1e-5, help=helps['diffusivity'])
    parser.add_argument('--ic-max', metavar='float', type=float,
                        action='store', dest='ic_max',
                        default=2.0, help=helps['ic_max'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=2, help=helps['order'])
    parser.add_argument('-r', '--refine', metavar='int', type=int,
                        action='store', dest='refine',
                        default=0, help=helps['refine'])
    parser.add_argument('-p', '--probe',
                        action="store_true", dest='probe',
                        default=False, help=helps['probe'])
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    options = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right',
                                 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu', nm.float64, 'scalar', omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral, omega, m=m, s=s, T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)',
                  integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0' : ic_fun})

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    state0 = pb.get_initial_state()
    init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)

    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
    tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
                                   nls=nls, context=pb, verbose=True)
    pb.set_solver(tss)

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_probes(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu', nm.float64, 'vector', omega,
                                approx_order=options.order - 1)
        dvel = FieldVariable('dvel', 'parameter', gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
                                approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a' : 1e-16, 'i_max' : 1}

        suffix = tss.ts.suffix
        def poststep_fun(ts, vec):
            _poststep_fun(ts, vec)

            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
                         % order, copy_materials=False, mode='qp')
            project_by_component(dvel, dvel_qp, component, order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png'
                        % (suffix % ts.step), bbox_inches='tight')

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                           % (val.min(), val.mean(), val.max()))
                output.level -= 2

    else:
        poststep_fun = _poststep_fun

    pb.time_update(tss.ts)
    state0.apply_ebc()

    # This is required if {'is_linear' : True} is passed to Newton.
    mtx = prepare_matrix(pb, state0)
    pb.try_presolve(mtx)

    tss_status = IndexedStruct()
    tss(state0.get_vec(pb.active_only),
        init_fun=init_fun, prestep_fun=prestep_fun, poststep_fun=poststep_fun,
        status=tss_status)

    output(tss_status)

    if options.show:
        plt.show()
コード例 #17
0
def main():
    from sfepy import data_dir

    parser = ArgumentParser()
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    options = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun,
                      extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print(nls_status)

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)
コード例 #18
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d', '--dims', metavar='dims',
                        action='store', dest='dims',
                        default='[1.0, 1.0]', help=helps['dims'])
    parser.add_argument('-c', '--centre', metavar='centre',
                        action='store', dest='centre',
                        default='[0.0, 0.0]', help=helps['centre'])
    parser.add_argument('-s', '--shape', metavar='shape',
                        action='store', dest='shape',
                        default='[11, 11]', help=helps['shape'])
    parser.add_argument('-b', '--bc-kind', metavar='kind',
                        action='store', dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free', help=helps['bc_kind'])
    parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1',
                        type=int, action='store', dest='axis',
                        default=-1, help=helps['axis'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=6.80e+10, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.36, help=helps['poisson'])
    parser.add_argument('--density', metavar='float', type=float,
                        action='store', dest='density',
                        default=2700.0, help=helps['density'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    parser.add_argument('-i', '--ignore', metavar='int', type=int,
                        action='store', dest='ignore',
                        default=None, help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('filename', nargs='?', default=None)
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')
    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e'
               % (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]),
                    dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg', verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements',
                                    ['rel_scaling=%s' % scaling,
                                     'color_kind="tensors"',
                                     'color_name="strain%03d"' % ii])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds, only_names=sorted(ds.keys()),
             is_scalar_bar=False, is_wireframe=True)
コード例 #19
0
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i,
                              approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2*order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral, omega_i, m=mat, v_i=v_i, u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val' : _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral, omega_i, load=load, v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all' : 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
コード例 #20
0
    def _solve(self, property_array):
        """
        Solve the Sfepy problem for one sample.

        Args:
          property_array: array of shape (n_x, n_y, 2) where the last
          index is for Lame's parameter and shear modulus,
          respectively.

        Returns:
          the strain field of shape (n_x, n_y, 2) where the last
          index represents the x and y displacements

        """
        shape = property_array.shape[:-1]
        mesh = self._get_mesh(shape)
        domain = Domain('domain', mesh)

        region_all = domain.create_region('region_all', 'all')

        field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member
                                approx_order=2)

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = self._get_material(property_array, domain)

        integral = Integral('i', order=4)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, region_all, m=m, v=v, u=u)
        eq = Equation('balance_of_forces', t1)
        eqs = Equations([eq])

        epbcs, functions = self._get_periodicBCs(domain)
        ebcs = self._get_displacementBCs(domain)
        lcbcs = self._get_linear_combinationBCs(domain)

        ls = ScipyDirect({})

        pb = Problem('elasticity', equations=eqs, auto_solvers=None)

        pb.time_update(
            ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions)

        ev = pb.get_evaluator()
        nls = Newton({}, lin_solver=ls,
                     fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

        try:
            pb.set_solvers_instances(ls, nls)
        except AttributeError:
            pb.set_solver(nls)

        vec = pb.solve()

        u = vec.create_output_dict()['u'].data
        u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))

        dims = domain.get_mesh_bounding_box().shape[1]
        strain = np.squeeze(
            pb.evaluate(
                'ev_cauchy_strain.{dim}.region_all(u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))

        stress = np.squeeze(
            pb.evaluate(
                'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))

        return strain_reshape, u_reshape, stress_reshape
コード例 #21
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
コード例 #22
0
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='7,7,7', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-3', '--3d',
                        action='store_true', dest='is_3d',
                        default=False, help=helps['3d'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    options = parser.parse_args()

    dim = 3 if options.is_3d else 2
    dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

    output('dimensions:', dims)
    output('shape:     ', shape)
    output('centre:    ', centre)

    mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem',
                           verbose=True)
    domain0 = FEDomain('d', mesh0)

    bbox = domain0.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps = 1e-8 * (max_x - min_x)

    cnt = (shape[0] - 1) // 2
    g0 = 0.5 * dims[0]
    grading = nm.array([g0 / 2**ii for ii in range(cnt)]) + eps + centre[0] - g0

    domain, subs = refine_towards_facet(domain0, grading, 'x <')

    omega = domain.create_region('Omega', 'all')

    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega,
                            approx_order=options.order)

    if subs is not None:
        field.substitute_dofs(subs)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    def u_fun(ts, coors, bc=None, problem=None):
        """
        Define a displacement depending on the y coordinate.
        """
        if coors.shape[1] == 2:
            min_y, max_y = bbox[:, 1]
            y = (coors[:, 1] - min_y) / (max_y - min_y)

            val = (max_y - min_y) * nm.cos(3 * nm.pi * y)

        else:
            min_y, max_y = bbox[:, 1]
            min_z, max_z = bbox[:, 2]
            y = (coors[:, 1] - min_y) / (max_y - min_y)
            z = (coors[:, 2] - min_z) / (max_z - min_z)

            val = ((max_y - min_y) * (max_z - min_z)
                   * nm.cos(3 * nm.pi * y) * (1.0 + 3.0 * (z - 0.5)**2))

        return val

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('shift_u', gamma1, {'u.0' : bc_fun})
    fix2 = EssentialBC('fix2', gamma2, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([fix1, fix2]))
    state = pb.solve()

    if subs is not None:
        field.restore_dofs()

    filename = os.path.join(options.output_dir, 'hanging.vtk')
    ensure_path(filename)

    pb.save_state(filename, state)
    if options.order > 1:
        pb.save_state(filename, state, linearization=Struct(kind='adaptive',
                                                            min_level=0,
                                                            max_level=8,
                                                            eps=1e-3))
コード例 #23
0
ファイル: its2D_interactive.py プロジェクト: uberstig/sfepy
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=2000.0,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.4,
                      help=helps['poisson'])
    parser.add_option('--load',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='load',
                      default=-1000.0,
                      help=helps['load'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val': [0.0, options.load]})

    integral = Integral('i', order=2 * options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral,
                  omega,
                  Asphalt=asphalt,
                  v=v,
                  u=u)
    t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1': 0.0})
    ysym = EssentialBC('YSym', left, {'u.0': 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn',
                           coors=gdata.coors,
                           weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor',
                                 nm.float64,
                                 3,
                                 omega,
                                 approx_order=options.order - 1)
        stress = FieldVariable('stress',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component',
                                 nm.float64,
                                 1,
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp',
                       copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                       (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=1,
             is_scalar_bar=True,
             is_wireframe=True)
コード例 #24
0
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0': 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0': 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0': 'u.0'},
                               dof_map_fun,
                               'shifted_periodic',
                               arguments=(shift_fun, ))

    ls = ScipyDirect({})

    pb = Problem('laplace', equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({},
                 lin_solver=ls,
                 fun=ev.eval_residual,
                 fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
コード例 #25
0
ファイル: linear_elastic.py プロジェクト: adantra/Arma_paper
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()
    options_probe = True
    folder = str(uuid.uuid4())
    os.mkdir(folder)
    os.chdir(folder)
    
    file = open('README.txt', 'w')
    file.write('DIMENSIONS\n')
    file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n')
    file.write('DISCRETIZATION (NX, NY, NZ)\n')
    file.write(str(NX)+'  '+str(NY)+'  '+str(NZ)+'\n')
    file.write('MATERIALS\n')
    file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n')
    
    #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    
    mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    min_y, max_y = domain.get_mesh_bounding_box()[:,1]
    min_z, max_z = domain.get_mesh_bounding_box()[:,2]
    eps = 1e-8 * (max_x - min_x)
    print min_x, max_x
    print min_y, max_y
    print min_z, max_z
    R1 = domain.create_region('Ym',
                                  'vertices in z < %.10f' % (max_z/2))
    R2 = domain.create_region('Yf',
                                  'vertices in z >= %.10f' % (min_z/2))
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Left',
                                  'vertices in x < %.10f' % (min_x + eps), 
                                  'facet')
    gamma2 = domain.create_region('Right',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Front',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Back',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')
    gamma5 = domain.create_region('Bottom',
                                  'vertices in z < %.10f' % (min_z + eps),
                                  'facet')
    gamma6 = domain.create_region('Top',
                                  'vertices in z > %.10f' % (max_z - eps),
                                  'facet')



    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    mu=1.1
    lam=1.0
    m = Material('m', lam=lam, mu=mu)
    f = Material('f', val=[[0.0], [0.0],[0.0]])
    #mu,lam=m.get_constants_mu_lam()
    #print mu.lam 
    D = stiffness_from_lame(3,lam, mu)    
    mat = Material('Mat', D=D)

    #D = stiffness_from_youngpoisson(2, options.young, options.poisson)
    get_mat = Function('get_mat1',get_mat1)
    #get_mat1=Function('get_mat', (lambda ts, coors, mode=None, problem=None, **kwargs:
    #                get_mat(coors, mode, problem)))
    #mat = Material('Mat', function=Function('get_mat1',get_mat1))
    #mat = Material('Mat', 'get_mat')
    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(Mat.D, v, u)',
         integral, omega, Mat=mat, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
    left_bc  = EssentialBC('Left',  gamma1, {'u.0' : 0.0})
    right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0})
    back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0})
    front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0})
    bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0})
    top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2})

    bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc,top_bc]
    #bc=[bottom_bc,top_bc]

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})
    #get_mat = Function('get_mat1',get_mat1)
    #mat = Material('Mat', function=Function('get_mat1',get_mat1))
    #ls = ScipyDirect({'method':'umfpack'})
    ##############################
    #  ##### SOLVER SECTION  #####
    ##############################
    
    # GET MATRIX FOR PRECONTITIONER #
    
    
    #ls = ScipyIterative({'method':'bicgstab','i_max':5000,'eps_r':1e-10})
    #ls = ScipyIterative({})
    
#ls = PyAMGSolver({'i_max':5000,'eps_r':1e-10})
#conf = Struct(method='cg', precond='gamg', sub_precond=None,i_max=10000, eps_a=1e-50, eps_r=1e-5, eps_d=1e4, verbose=True)
    #ls = PETScKrylovSolver({'method' : 'cg', 'precond' : 'icc', 'eps_r' : 1e-10, 'i_max' : 5000})
    conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
                  i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4,
                  verbose=True)
                  #conf = Struct(method = 'cg', precond = 'icc', eps_r = 1e-10, i_max = 5000)
    ls = PETScKrylovSolver(conf)
#if hasattr(ls.name,'ls.scipy_iterative'):
    file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' )
        #    else:
#file.write(str(ls.name)+' '+str(ls.conf.method)+'\n')



   
   
   # conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
   #                 i_max=10000, eps_a=1e-50, eps_r=1e-8, eps_d=1e4,
#              verbose=True)
            
                 
                 
#ls = PETScKrylovSolver(conf)



#ls = ScipyIterative({'method':'bicgstab','i_max':100,'eps_r':1e-10})


    nls_status = IndexedStruct()
    nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    


    dd=pb.get_materials()['Mat']
    dd.set_function(get_mat1)
    
    
    pb.save_regions_as_groups('regions')

    #pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    pb.time_update(ebcs=Conditions(bc))
    pb.save_regions_as_groups('regions')

#ls = ScipyIterative({'method':'bicgstab','i_max':100,'eps_r':1e-10})


#   A = pb.mtx_a
#   M = spilu(A,fill_factor = 1)
    
    #conf = Struct(solvers ='ScipyIterative',method='bcgsl', sub_precond=None,
# i_max=1000, eps_r=1e-8)
        
#pb.set_conf_solvers(conf)
    vec = pb.solve()
    print nls_status
    file.write('TIME TO SOLVE\n')
    file.write(str(nls.status.time_stats['solve'])+'\n')
    file.write('TIME TO CREATE MATRIX\n')
    file.write(str(nls.status.time_stats['matrix'])+'\n')
    #out = post_process(out, pb, state, extend=False)
    ev = pb.evaluate
    out = vec.create_output_dict()
    strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg')
    stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg',
                copy_materials=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain, dofs=None)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress, dofs=None)


    # Postprocess the solution.
    #out = vec.create_output_dict()
    #out = stress_strain(out, pb, vec,lam,mu, extend=True)
    #pb.save_state('its2D_interactive.vtk', out=out)
    #print 'aqui estoy'
    pb.save_state('strain.vtk', out=out)
    #pb.save_state('disp.vtk', out=vec)
    #print 'ahora estoy aqui'
    #out = stress_strain(out, pb, vec, extend=True)
    #pb.save_state('out.vtk', out=out)
    print nls_status
    
    order = 3
    strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
    stress_qp = ev('ev_cauchy_stress.%d.Omega(Mat.D, u)' % order,
                       mode='qp', copy_materials=False)

    file.close()
    options_probe=False
    if options_probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)
        nls_options = {'eps_a':1e-8,'i_max':1}
        ls = ScipyDirect({})
        ls2 = ScipyIterative({'method':'bicgstab','i_max':5000,'eps_r':1e-20})
        order = 5
        sfield = Field.from_args('sym_tensor', nm.float64, (3,), omega,
                                approx_order=order-1)
        stress = FieldVariable('stress', 'parameter', sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain', 'parameter', sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component', nm.float64, 1, omega,
                                 approx_order=order-1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2*(order - 1) #2 * (2- 1)
        print "before strain_qp"
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Mat.D, u)' % order,
                       mode='qp', copy_materials=False)
        print "before projections"
        print stress
        project_by_component(strain, strain_qp, component, order,ls2,nls_options)
        #print 'strain done'
        project_by_component(stress, stress_qp, component, order,ls2,nls_options)

        print "after projections"
        
        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results2(u, strain, stress, probe, labels[ii])

            fig.savefig('test_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                       % (val.min(), val.mean(), val.max()))
            output.level -= 2
コード例 #26
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain("domain_i", mesh_i)
    omega_i = domain_i.create_region("Omega", "all")

    gamma1_i = domain_i.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps_x), "facet", allow_empty=True)
    gamma2_i = domain_i.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps_x), "facet", allow_empty=True)
    gamma3_i = domain_i.create_region("Gamma3", "vertices in (y < %.10f)" % (min_y + eps_y), "facet", allow_empty=True)

    field1_i = Field.from_args("fu", nm.float64, mesh.dim, omega_i, approx_order=order_u)

    field2_i = Field.from_args("fp", nm.float64, 1, omega_i, approx_order=order_p)

    output("field 1: number of local DOFs:", field1_i.n_nod)
    output("field 2: number of local DOFs:", field2_i.n_nod)

    u_i = FieldVariable("u_i", "unknown", field1_i, order=0)
    v_i = FieldVariable("v_i", "test", field1_i, primary_var_name="u_i")
    p_i = FieldVariable("p_i", "unknown", field2_i, order=1)
    q_i = FieldVariable("q_i", "test", field2_i, primary_var_name="p_i")

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]])

    mat = Material("m", lam=10, mu=5, k=1, alpha=alpha)
    integral = Integral("i", order=2 * (max(order_u, order_p)))

    t11 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v_i, u_i)", integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new("dw_biot(m.alpha, v_i, p_i)", integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new("dw_biot(m.alpha, u_i, q_i)", integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new("dw_laplace(m.k, q_i, p_i)", integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation("eq1", t11 - t12)
    eq2 = Equation("eq1", t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC("ebc1", gamma1_i, {"u_i.all": 0.0})
    ebc2 = EssentialBC("ebc2", gamma2_i, {"u_i.0": 0.05})

    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function("bc_fun", bc_fun)
    ebc3 = EssentialBC("ebc3", gamma3_i, {"p_i.all": fun})

    pb = Problem("problem_i", equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
コード例 #27
0
def main():
    from sfepy import data_dir

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('--diffusivity',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='diffusivity',
                        default=1e-5,
                        help=helps['diffusivity'])
    parser.add_argument('--ic-max',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='ic_max',
                        default=2.0,
                        help=helps['ic_max'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=2,
                        help=helps['order'])
    parser.add_argument('-r',
                        '--refine',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='refine',
                        default=0,
                        help=helps['refine'])
    parser.add_argument('-p',
                        '--probe',
                        action="store_true",
                        dest='probe',
                        default=False,
                        help=helps['probe'])
    parser.add_argument('-s',
                        '--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    options = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral,
                  omega,
                  m=m,
                  s=s,
                  T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0': 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0': -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)

    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0': ic_fun})

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    state0 = pb.get_initial_state()
    init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)

    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)
    tss = SimpleTimeSteppingSolver({
        't0': 0.0,
        't1': 100.0,
        'n_step': 11
    },
                                   nls=nls,
                                   context=pb,
                                   verbose=True)
    pb.set_solver(tss)

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu',
                                 nm.float64,
                                 'vector',
                                 omega,
                                 approx_order=options.order - 1)
        dvel = FieldVariable('dvel',
                             'parameter',
                             gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu',
                                 nm.float64,
                                 'scalar',
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a': 1e-16, 'i_max': 1}

        if options.show:
            plt.ion()

        suffix = tss.ts.suffix

        def poststep_fun(ts, vec):
            _poststep_fun(ts, vec)

            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' %
                         order,
                         copy_materials=False,
                         mode='qp')
            project_by_component(dvel,
                                 dvel_qp,
                                 component,
                                 order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png' %
                        (suffix % ts.step),
                        bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                           (val.min(), val.mean(), val.max()))
                output.level -= 2

    else:
        poststep_fun = _poststep_fun

    pb.time_update(tss.ts)
    state0.apply_ebc()

    # This is required if {'is_linear' : True} is passed to Newton.
    mtx = prepare_matrix(pb, state0)
    pb.try_presolve(mtx)

    tss_status = IndexedStruct()
    tss(state0.get_vec(pb.active_only),
        init_fun=init_fun,
        prestep_fun=prestep_fun,
        poststep_fun=poststep_fun,
        status=tss_status)

    output(tss_status)
コード例 #28
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
コード例 #29
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()
    options_probe = True


    folder = str(uuid.uuid4())
    os.mkdir(folder)
    os.chdir(folder)

    file = open('README.txt', 'w')
    file.write('DIMENSIONS\n')
    file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n')
    file.write('DISCRETIZATION (NX, NY, NZ)\n')
    file.write(str(NX)+'  '+str(NY)+'  '+str(NZ)+'\n')
    file.write('MATERIALS\n')
    file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n')

    #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')

    mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    min_y, max_y = domain.get_mesh_bounding_box()[:,1]
    min_z, max_z = domain.get_mesh_bounding_box()[:,2]
    eps = 1e-8 * (max_x - min_x)
    print min_x, max_x
    print min_y, max_y
    print min_z, max_z
    R1 = domain.create_region('Ym',
                                  'vertices in z < %.10f' % (max_z/2))
    R2 = domain.create_region('Yf',
                                  'vertices in z >= %.10f' % (min_z/2))
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Left',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Right',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Front',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Back',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')
    gamma5 = domain.create_region('Bottom',
                                  'vertices in z < %.10f' % (min_z + eps),
                                  'facet')
    gamma6 = domain.create_region('Top',
                                  'vertices in z > %.10f' % (max_z - eps),
                                  'facet')



    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    mu=1.1
    lam=1.0
    m = Material('m', lam=lam, mu=mu)
    f = Material('f', val=[[0.0], [0.0],[-1.0]])
    load = Material('Load',val=[[0.0],[0.0],[-Load]])

    D = stiffness_from_lame(3,lam, mu)
    mat = Material('Mat', D=D)

    get_mat = Function('get_mat1',get_mat1)
    get_mat_f = Function('get_mat_f',get_mat1)

    integral = Integral('i', order=3)
    s_integral = Integral('is',order=2)

    t1 = Term.new('dw_lin_elastic(Mat.D, v, u)',
         integral, omega, Mat=mat, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    #t3 = Term.new('DotProductSurfaceTerm(Load.val, v)',s_integral,gamma5,Load=load,v=v)
    t3 = Term.new('dw_surface_ltr( Load.val, v )',s_integral,gamma6,Load=load,v=v)
    eq = Equation('balance', t1 + t2 + t3)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
    left_bc  = EssentialBC('Left',  gamma1, {'u.0' : 0.0})
    right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0})
    back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0})
    front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0})
    bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0})
    top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2})

    bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc]
    #bc=[bottom_bc,top_bc]


    ##############################
    #  ##### SOLVER SECTION  #####
    ##############################

    conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
                  i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4,
                  verbose=True)

    ls = PETScKrylovSolver(conf)

    file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' )

    nls_status = IndexedStruct()
    nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    dd=pb.get_materials()['Mat']
    dd.set_function(get_mat1)
    #xload = pb.get_materials()['f']
    #xload.set_function(get_mat_f)

    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions(bc))

    vec = pb.solve()
    print nls_status


    file.write('TIME TO SOLVE\n')
    file.write(str(nls.status.time_stats['solve'])+'\n')
    file.write('TIME TO CREATE MATRIX\n')
    file.write(str(nls.status.time_stats['matrix'])+'\n')

    ev = pb.evaluate
    out = vec.create_output_dict()
    strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg')
    stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg',
                copy_materials=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain, dofs=None)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress, dofs=None)

    pb.save_state('strain.vtk', out=out)

    print nls_status


    file.close()
コード例 #30
0
ファイル: projections.py プロジェクト: Nasrollah/sfepy
def make_l2_projection_data(target, eval_data, order=None,
                            ls=None, nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
       order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name, integral,
                   un.field.region, v=v, **{un.name : un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val' : val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)', integral, un.field.region,
                   m=m, v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
コード例 #31
0
bc2 = EssentialBC('Gamma_Right', gammaR, {'t.0': set_bc_fun})

bc3 = EssentialBC('Gamma_Top', gammaT, {'t.0': set_bc_fun})
bc4 = EssentialBC('Gamma_Bottom', gammaB, {'t.0': set_bc_fun})

ls = ScipyDirect({})

nls_status = IndexedStruct()
newtonConfig = {'i_max': 10, 'eps_a': 1e-10, 'eps_r': 1}
nls = Newton(newtonConfig, lin_solver=ls, status=nls_status)

pb = Problem('Poisson', equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups('regions')

# pb.time_update(ebcs=Conditions([fix_u, t1, t2]))
pb.time_update(ebcs=Conditions([bc1, bc2, bc3, bc4]))

vec = pb.solve()
print nls_status

pb.save_state('customCylinder.vtk', vec)

# if options.show:
# view = Viewer('customCylinder.vtk')
# view(vector_mode='warp_norm', rel_scaling=2,
#      is_scalar_bar=True, is_wireframe=True)

solutionData = vec.vec.reshape(100, 100)
xGrid = mesh.coors[:, 0].reshape(100, 100)
yGrid = mesh.coors[:, 1].reshape(100, 100)
analyticSolution = np.sin(xGrid / np.pi) * np.sin(yGrid / np.pi)
コード例 #32
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print(nls_status)

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('-b',
                        '--bc-kind',
                        metavar='kind',
                        action='store',
                        dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free',
                        help=helps['bc_kind'])
    parser.add_argument('-a',
                        '--axis',
                        metavar='0, ..., dim, or -1',
                        type=int,
                        action='store',
                        dest='axis',
                        default=-1,
                        help=helps['axis'])
    parser.add_argument('--young',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='young',
                        default=200e+9,
                        help=helps['young'])
    parser.add_argument('--poisson',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='poisson',
                        default=0.3,
                        help=helps['poisson'])
    parser.add_argument('--density',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='density',
                        default=7800.0,
                        help=helps['density'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('-i',
                        '--ignore',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='ignore',
                        default=None,
                        help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    #parser.add_argument('filename', nargs='?', default=None)
    #read block.mesh
    #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh")
    parser.add_argument('filename', nargs='?', default="block_1m.mesh")
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    """
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')

    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')
    """
    #import pdb; pdb.set_trace()
    left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)
    """
    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) // 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore
    """
    fixed = EssentialBC('Fixed', left, {'u.all': 0.0})
    pb.time_update(ebcs=Conditions([fixed]))
    n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k,
                                 mtx_m,
                                 options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e' %
               (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
コード例 #34
0
ファイル: modal.py プロジェクト: bbbales2/modal
Ks = []
Ms = []
for D in [Ddmu, Ddlambda]:#, D2, D3]
    m = Material('m', D = D, rho = 2700.0)

    integral = Integral('i', order=2)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations = lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    Ks.append(mtx_k)
    Ms.append(mtx_m)

dKdmu = Ks[0]# (Ks[1] - Ks[0]) / (mu1 - mu0)
dKdlambda = Ks[1]# (Ks[3] - Ks[2]) / (lambda1 - lambda0)
コード例 #35
0
ファイル: modal_analysis.py プロジェクト: marcinch18/sfepy
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-d',
                      '--dims',
                      metavar='dims',
                      action='store',
                      dest='dims',
                      default='[1.0, 1.0]',
                      help=helps['dims'])
    parser.add_option('-c',
                      '--centre',
                      metavar='centre',
                      action='store',
                      dest='centre',
                      default='[0.0, 0.0]',
                      help=helps['centre'])
    parser.add_option('-s',
                      '--shape',
                      metavar='shape',
                      action='store',
                      dest='shape',
                      default='[11, 11]',
                      help=helps['shape'])
    parser.add_option('-b',
                      '--bc-kind',
                      metavar='kind',
                      action='store',
                      dest='bc_kind',
                      choices=['free', 'clamped'],
                      default='free',
                      help=helps['bc_kind'])
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=6.80e+10,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.36,
                      help=helps['poisson'])
    parser.add_option('--density',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='density',
                      default=2700.0,
                      help=helps['density'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-n',
                      '--n-eigs',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='n_eigs',
                      default=6,
                      help=helps['order'])
    parser.add_option('',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    dims = nm.array(eval(options.dims), dtype=nm.float64)
    dim = len(dims)
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

    output('dimensions:', dims)
    output('centre:    ', centre)
    output('shape:     ', shape)
    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)

    # Build the problem definition.
    mesh = gen_block_mesh(dims, shape, centre, name='mesh')
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_y - min_y)
    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (y < %.10f)' % (min_y + eps),
                                  'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    else:
        fixed_b = EssentialBC('FixedB', bottom, {'u.all': 0.0})
        pb.time_update(ebcs=Conditions([fixed_b]))
        n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = sla.eigsh(mtx_k,
                                k=options.n_eigs + n_rbm,
                                M=mtx_m,
                                which='SM',
                                tol=1e-5,
                                maxiter=10000)
    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    output('eigenvalues:', eigs)
    output('eigen-frequencies:', nm.sqrt(eigs))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in xrange(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in xrange(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in xrange(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)